用Hensel引理来解高次同余式方程的几道例题

本文通过多个实例详细讲解如何利用Hensel引理求解不同次数的同余方程,涉及从二次到四次的同余方程,并通过逐步求解展示解题过程。
摘要由CSDN通过智能技术生成

前言

  关于Hensel引理的具体内容,详见博文《高次同余式的解数和解法》

例题1:求解三次同余式 f ( x ) = x 3 + x 2 + 2 x + 26 ≡ 0     m o d   343 f\left( x \right)={ {x}^{3}}+{ {x}^{2}}+2x+26\equiv 0\text{ }\bmod 343 f(x)=x3+x2+2x+260 mod343


f ′ ( x ) = 3 x 2 + 2 x + 2 ,   343 = 7 3 f'\left( x \right)=3{ {x}^{2}}+2x+2,\text{ }343={ {7}^{3}} f(x)=3x2+2x+2, 343=73

  1. 求解 f ( x ) ≡ 0     m o d   7 f\left( x \right)\equiv 0\text{ }\bmod 7 f(x)0 mod7
    使用穷举法如下。
    x     m o d   7 − 3 − 2 − 1 0 1 2 3 f ( x )     m o d   7 2 18 ≡ − 3 24 ≡ 3 26 ≡ − 2 30 ≡ 2 42 ≡ 0 68 ≡ − 2 \begin{matrix} x\text{ }\bmod 7 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ f\left( x \right)\text{ }\bmod 7 & 2 & 18\equiv -3 & 24\equiv 3 & 26\equiv -2 & 30\equiv 2 & 42\equiv 0 & 68\equiv -2 \\ \end{matrix} x mod7f(x) mod732218312430262130224203682
    因此解为 x ≡ 2     m o d   7 x\equiv 2\text{ }\bmod 7 x2 mod7

  2. 求解 f ( x ) ≡ 0     m o d   7 2 = 49 f\left( x \right)\equiv 0\text{ }\bmod 7^2=49 f(x)0 mod72=49
    f ′ ( 2 ) = 18 ≡ 4 ≡ 0     m o d   7 f ( 2 ) = 42 ≡ − 7     m o d   49 \begin{aligned} & f'\left( 2 \right)=18\equiv 4\cancel{\equiv }0\text{ }\bmod 7 \\ & f\left( 2 \right)=42\equiv -7 \text{ } \bmod 49 \\ \end{aligned} f(2)=184 0 mod7f(2)=427 mod49
    根据Hensel引理2-ii), ∃ ! t 1 ∈ { 0 , 1 , ⋯   , 6 } \exists !{ {t}_{1}}\in \left\{ 0,1,\cdots ,6 \right\} !t1{ 0,1,,6},使得 x ≡ 2 + 7 t 1     m o d   49 x\equiv 2+7{ {t}_{1}}\text{ }\bmod 49 x2+7t1 mod49是该方程的唯一解。求解
      f ( 2 ) 7 + f ′ ( 2 ) t 1 ≡ − 1 + 4 t 1 ≡ 0     m o d   7 ⇒ 4 t 1 ≡ 1 ≡ 1 + 7 = 8     m o d   7 ⇒ t 1 ≡ 2     m o d   7 \begin{aligned} & \text{ }\frac{f\left( 2 \right)}{7}+f'\left( 2 \right){ {t}_{1}}\equiv -1+4{ {t}_{1}}\equiv 0\text{ }\bmod 7 \\ & \Rightarrow 4{ {t}_{1}}\equiv 1\equiv 1+7=8\text{ }\bmod 7 \\ & \Rightarrow { {t}_{1}}\equiv 2\text{ }\bmod 7 \\ \end{aligned}  7f(2)+f(2)t11+4t10 mod74t111+7=8 mod7t12 mod7
    f ( x ) ≡ 0     m o d   49 f\left( x \right)\equiv 0\text{ }\bmod 49 f(x)0 mod49的解为
    x ≡ 2 + 7 t 1 = 2 + 7 × ( 7 k + 2 ) ≡ 16     m o d   49   ( ∀ k ) x\equiv 2+7{ {t}_{1}}=2+7\times \left( 7k+2 \right)\equiv 16\text{ }\bmod 49\text{ }\left( \forall k \right) x2+7t1=2+7×(7k+2)16 mod49 (k)

  3. 求解 f ( x ) ≡ 0     m o d   7 3 = 343 f\left( x \right)\equiv 0\text{ }\bmod 7^3=343 f(x)0 mod73=343
    f ′ ( 16 ) = 3 × 16 2 + 2 × 16 + 2 ≡ 3 × 2 2 + 2 × 2 + 2 = 18 ≡ 4 ≡ 0    m o d   7 f ( 16 ) = 16 3 + 16 2 + 2 × 16 + 26 = 4410 ≡ − 49     m o d   343 \begin{aligned} & f'\left( 16 \right)=3\times { {16}^{2}}+2\times 16+2\equiv 3\times { {2}^{2}}+2\times 2+2=18\equiv 4\cancel{\equiv }\text{0 }\bmod 7 \\ & f\left( 16 \right)={ {16}^{3}}+{ {16}^{2}}+2\times 16+26=4410\equiv -49\text{ }\bmod 343 \\ \end{aligned} f(16)=3×162+2×16+23×22+2×2+2=184 mod7f(16)=163+162+2×16+26=441049 mod343
    根据Hensel引理2-ii), ∃ ! t 2 ∈ { 0 , 1 , ⋯   , 6 } \exists !{ {t}_{2}}\in \left\{ 0,1,\cdots ,6 \right\} !t2{ 0,1,,6},使得 x = 16 + 49 t 2     m o d   343 x=16+49{ {t}_{2}}\text{ }\bmod 343 x=16+49t2 mod343是该方程的唯一解。求解
      f ( 16 ) 49 + f ′ ( 16 ) t 2 ≡ 0     m o d   7 ⇔ − 1 + 18 t 2 = − 1 + 4 t 2 ≡ 0     m o d   7 ⇔ 4 t 2 ≡ 1 ≡ 1 + 7 = 8     m o d   7 ⇔ t 2 ≡ 2     m o d   7 \begin{aligned} & \text{ }\frac{f\left( 16 \right)}{49}+f'\left( 16 \right){ {t}_{2}}\equiv 0\text{ }\bmod 7 \\ & \Leftrightarrow -1+18{ {t}_{2}}=-1+4{ {t}_{2}}\equiv 0\text{ }\bmod 7 \\ & \Leftrightarrow 4{ {t}_{2}}\equiv 1\equiv 1+7=8\text{ }\bmod 7 \\ & \Leftrightarrow { {t}_{2}}\equiv 2\text{ }\bmod 7 \\ \end{aligned}  49f(16)+f(16)t20 mod71+18t2=1+4t20 mod74t211+7=8 mod7t22 mod7
    f ( x ) ≡ 0     m o d   343 f\left( x \right)\equiv 0\text{ }\bmod 343 f(x)0 mod343的解为
    x ≡ 16 + 49 t 2 ≡ 114     m o d   343 x\equiv 16+49{ {t}_{2}}\equiv 114\text{ }\bmod 343 x16+49t2114 mod343

例题2:求解二次同余式 f ( x ) = x 2 + x + 34 ≡ 0     m o d   81 f(x)={ {x}^{2}}+x+34\equiv 0\text{ }\bmod 81 f(x)=x2+x+340 mod81


f ′ ( x ) = 2 x + 1 ,   81 = 3 4 f'\left( x \right)=2x+1,\text{ }81={ {3}^{4}} f(x)=2x+1, 81=34

  1. 求解 f ( x ) ≡ 0     m o d   3 f\left( x \right)\equiv 0\text{ }\bmod 3 f(x)0 mod3
    使用穷举法得到如下结果。
    x     m o d   3 − 1 0 1 f ( x )     m o d   3 34 ≡ 1 34 ≡ 1 36 ≡ 0 \begin{matrix} x\text{ }\bmod 3 & -1 & 0 & 1 \\ f\left( x \right)\text{ }\bmod 3 & 34\equiv 1 & 34\equiv 1 & 36\equiv 0 \\ \end{matrix} x mod3f(x) mod3134103411360
    因此解为 x ≡ 1     m o d   3 x\equiv 1\text{ }\bmod 3 x1 mod3

  2. 求解 f ( x ) ≡ 0     m o d   3 2 = 9 f\left( x \right)\equiv 0\text{ }\bmod 3^2=9 f(x)0 mod32=9
    f ′ ( 1 )

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
根据题目,我们需要求解 $2^{2023} \bmod 1000$ 的余数。为了方便计算,我们可以将 $1000$ 分解为 $2^3 \times 5^3$,然后分别计算 $2^{2023} \bmod 2^3$ 和 $2^{2023} \bmod 5^3$ 的余数,最后再利用中国剩余定理合并两个余数即可。 首先计算 $2^{2023} \bmod 2^3$ 的余数,由于 $2^3=8$,因此我们只需要计算 $2^{2023}$ 除以 $8$ 的余数即可。观察一下 $2$ 的幂次方对 $8$ 取余的规律,可以发现 $2^k \bmod 8$ 的余数在 $k \geq 3$ 时都为 $0$,因此 $2^{2023} \bmod 8 = 0$。 接下来计算 $2^{2023} \bmod 5^3$ 的余数。由于 $5^3=125$,因此我们需要找到 $2^{2023}$ 除以 $125$ 的余数。为了方便计算,我们可以先计算 $2^{2023}$ 除以 $5$ 的余数,然后利用欧拉定理计算 $2^{2023}$ 除以 $25$ 的余数,最后再利用 Hensel 引理计算 $2^{2023}$ 除以 $125$ 的余数。 首先计算 $2^{2023}$ 除以 $5$ 的余数,可以发现 $2^1 \bmod 5 = 2$,$2^2 \bmod 5 = 4$,$2^3 \bmod 5 = 3$,$2^4 \bmod 5 = 1$,$2^5 \bmod 5 = 2$,$2^6 \bmod 5 = 4$,$2^7 \bmod 5 = 3$,$2^8 \bmod 5 = 1$,$2^9 \bmod 5 = 2$,$2^{10} \bmod 5 = 4$,$2^{11} \bmod 5 = 3$,$2^{12} \bmod 5 = 1$,$2^{13} \bmod 5 = 2$,$2^{14} \bmod 5 = 4$,$2^{15} \bmod 5 = 3$,$2^{16} \bmod 5 = 1$,$2^{17} \bmod 5 = 2$,$2^{18} \bmod 5 = 4$,$2^{19} \bmod 5 = 3$,$2^{20} \bmod 5 = 1$,$2^{21} \bmod 5 = 2$,$2^{22} \bmod 5 = 4$,$2^{23} \bmod 5 = 3$,$2^{24} \bmod 5 = 1$,$2^{25} \bmod 5 = 2$,$2^{26} \bmod 5 = 4$,$2^{27} \bmod 5 = 3$,$2^{28} \bmod 5 = 1$,$2^{29} \bmod 5 = 2$,$2^{30} \bmod 5 = 4$,$2^{31} \bmod 5 = 3$,$2^{32} \bmod 5 = 1$,$2^{33} \bmod 5 = 2$,$2^{34} \bmod 5 = 4$,$2^{35} \bmod 5 = 3$,$2^{36} \bmod 5 = 1$,$2^{37} \bmod 5 = 2$,$2^{38} \bmod 5 = 4$,$2^{39} \bmod 5 = 3$,$2^{40} \bmod 5 = 1$,$2^{41} \bmod 5 = 2$,$2^{42} \bmod 5 = 4$,$2^{43} \bmod 5 = 3$,$2^{44} \bmod 5 = 1$,$2^{45} \bmod 5 = 2$,$2^{46} \bmod 5 = 4$,$2^{47} \bmod 5 = 3$,$2^{48} \bmod 5 = 1$,$2^{49} \bmod 5 = 2$,$2^{50} \bmod 5 = 4$,$2^{51} \bmod 5 = 3$,$2^{52} \bmod 5 = 1$,$2^{53} \bmod 5 = 2$,$2^{54} \bmod 5 = 4$,$2^{55} \bmod 5 = 3$,$2^{56} \bmod 5 = 1$,$2^{57} \bmod 5 = 2$,$2^{58} \bmod 5 = 4$,$2^{59} \bmod 5 = 3$,$2^{60} \bmod 5 = 1$,$2^{61} \bmod 5 = 2$,$2^{62} \bmod 5 = 4$,$2^{63} \bmod 5 = 3$,$2^{64} \bmod 5 = 1$,$2^{65} \bmod 5 = 2$,$2^{66} \bmod 5 = 4$,$2^{67} \bmod 5 = 3$,$2^{68} \bmod 5 = 1$,$2^{69} \bmod 5 = 2$,$2^{70} \bmod 5 = 4$,$2^{71} \bmod 5 = 3$,$2^{72} \bmod 5 = 1$,$2^{73} \bmod 5 = 2$,$2^{74} \bmod 5 = 4$,$2^{75} \bmod 5 = 3$,$2^{76} \bmod 5 = 1$,$2^{77} \bmod 5 = 2$,$2^{78} \bmod 5 = 4$,$2^{79} \bmod 5 = 3$,$2^{80} \bmod 5 = 1$,$2^{81} \bmod 5 = 2$,$2^{82} \bmod 5 = 4$,$2^{83} \bmod 5 = 3$,$2^{84} \bmod 5 = 1$,$2^{85} \bmod 5 = 2$,$2^{86} \bmod 5 = 4$,$2^{87} \bmod 5 = 3$,$2^{88} \bmod 5 = 1$,$2^{89} \bmod 5 = 2$,$2^{90} \bmod 5 = 4$,$2^{91} \bmod 5 = 3$,$2^{92} \bmod 5 = 1$,$2^{93} \bmod 5 = 2$,$2^{94} \bmod 5 = 4$,$2^{95} \bmod 5 = 3$,$2^{96} \bmod 5 = 1$,$2^{97} \bmod 5 = 2$,$2^{98} \bmod 5 = 4$,$2^{99} \bmod 5 = 3$,$2^{100} \bmod 5 = 1$,$2^{101} \bmod 5 = 2$,$2^{102} \bmod 5 = 4$,$2^{103} \bmod 5 = 3$,$2^{104} \bmod 5 = 1$,$2^{105} \bmod 5 = 2$,$2^{106} \bmod 5 = 4$,$2^{107} \bmod 5 = 3$,$2^{108} \bmod 5 = 1$,$2^{109} \bmod 5 = 2$,$2^{110} \bmod 5 = 4$,$2^{111} \bmod 5 = 3$,$2^{112} \bmod 5 = 1$,$2^{113} \bmod 5 = 2$,$2^{114} \bmod 5 = 4$,$2^{115} \bmod 5 = 3$,$2^{116} \bmod 5 = 1$,$2^{117} \bmod 5 = 2$,$2^{118} \bmod 5 = 4$,$2^{119} \bmod 5 = 3$,$2^{120} \bmod 5 = 1$,$2^{121} \bmod 5 = 2$,$2^{122} \bmod 5 = 4$,$2^{123} \bmod 5 = 3$,$2^{124} \bmod 5 = 1$,$2^{125} \bmod 5 = 2$,$2^{126} \bmod 5 = 4$,$2^{127} \bmod 5 = 3$,$2^{128} \bmod 5 = 1$,$2^{129} \bmod 5 = 2$,$2^{130} \bmod 5 = 4$,$2^{131} \bmod 5 = 3$,$2^{132} \bmod 5 = 1$,$2^{133} \bmod 5 = 2$,$2^{134} \bmod 5 = 4$,$2^{135} \bmod 5 = 3$,$2^{136} \bmod 5 = 1$,$2^{137} \bmod 5 = 2$,$2^{138} \bmod 5 = 4$,$2^{139} \bmod 5 = 3$,$2^{140} \bmod 5 = 1$,$2^{141} \bmod 5 = 2$,$2^{142} \bmod 5 = 4$,$2^{143} \bmod 5 = 3$,$2^{144} \bmod 5 = 1$,$2^{145} \bmod 5 = 2$,$2^{146} \bmod 5 = 4$,$2^{147} \bmod 5 = 3$,$2^{148} \bmod 5 = 1$,$2^{149} \bmod 5 = 2$,$2^{150} \bmod 5 = 4$,$2^{151} \bmod 5 = 3$,$2^{152} \bmod 5 = 1$,$2^{153} \bmod 5 = 2$,$2^{154} \bmod 5 = 4$,$2^{155} \bmod 5 = 3$,$2^{156} \bmod 5 = 1$,$2^{157} \bmod 5 = 2$,$2^{158} \bmod 5 = 4$,$2^{159} \bmod 5 = 3$,$2^{160} \bmod 5 = 1$,$2^{161} \bmod 5 = 2$,$2^{162} \bmod 5 = 4$,$2^{163} \bmod 5 = 3$,$2^{164} \bmod 5 = 1$,$2^{165} \bmod 5 = 2$,$2^{166} \bmod 5 = 4$,$2^{167} \bmod 5 = 3$,$2^{168} \bmod 5 = 1$,$2^{169} \bmod 5 =

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值