用O(nlgk)时间查找k分位数(所谓k分位数:将n个元素分成k个大小相等的集合的k-1个顺序统计量)

该博客探讨了如何在已排序的n元素集合中寻找k个分位数的问题,提出了一个O(nlgk)时间复杂度的算法。首先,作者指出简单按步长n/k输出元素的方法不符合要求,然后考虑使用SELECT函数来寻找第n/k, 第2n/k,...小的元素,但发现时间复杂度过高。最终,通过一种类似于二分法的策略解决了问题,当k为偶数时采用常规二分,而k为奇数时,根据k/2附近的选择进行划分,形成递归树,确保总时间复杂度为O(nlgk)。" 124617876,12532261,C语言指针详解:从基本概念到案例实践,"['C语言', '开发语言', '指针']
摘要由CSDN通过智能技术生成

相关问题:

The kth quantiles of an n-element set are the k 1 order statistics that divide the sorted set into k equal-sized sets (to within 1). Give an O.n lg k/-time algorithm to list the kth quantiles of a set.

对一个含有n个元素的集合来说,所谓k分位数(the kth quantile),就是能把已排序的集合分成k个大小相等的集合的k-1个顺序统计量。给出一个能输出某一集合的这k-1个顺序统计量的O(nlgk)时间的算法。

思考过程:

      开始我的想法是,既然是已排序的集合,那么我就写一个循环for(i=n/k;i<n;i+=n/k) cout<<A[i]<<" " n/k代表k个集合中的每个集合大小为n/k个元素。每隔n/k个元素就输出一个数,这样循环k-1次就输出了k-1和顺序统计量也就是k分位数。这样时间复杂度就是O(k),显然比O(nlgk)小,但是题目又要求给出O(nlgk)的算法。我想这可能是翻译有误,”sorted“在这句话里翻译成“已排序”是否妥当?,如果改成原数组初始未排序。那么如果还按照刚才的算法,明显不能求出。然后我就想出另外一个超级简单的算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值