K分查找时间复杂度推导

这篇博客探讨了K分查找算法的时间复杂度,指出常见的误解,并通过构造二叉判定树进行了推导。作者认为K分查找的判定树不应被视为K叉树,而是二叉树,由此得出时间复杂度的递推公式,并最终得出O(log_k n)的大O表示法。
摘要由CSDN通过智能技术生成

K分查找时间复杂度推导

问题描述

类比二分搜索算法,设计k分搜索算法(k为大于2的整数)如下:首先检查n/k处(n为被搜索集合的元素个数)的元素是否等于要搜索的值,然后检查2n/k处的元素,……,这样,或者找到要搜索的元素,或者把集合缩小到原来的1/k;如果未找到要搜索的元素,则继续在得到的集合上进行k分搜索;如此进行,直到找到要搜索的元素或搜索失败。求时间复杂度。

因为我并不认可王道书上这道题的答案,所以自己尝试证明了一下K分查找的时间复杂度。

本题的思路是:基于K分查找的判定树,写出K分查找的时间复杂度递推公式,可以计算其时间复杂度。

我认为王道书错误的地方在于认为K分查找的判断树是K叉树,实际上K分查找的判断树应当是二叉树

K分查找判定树

在这里插入图片描述

时间复杂度简要推导过程

由K分查找的判断树可知K分查找的时间复杂度递推公式
在这里插入图片描述
从而
在这里插入图片描述

所以时间复杂度用大O表示法为
在这里插入图片描述

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值