概率论小课堂:高斯分布(正确认识大概率事件)

这篇博客介绍了高斯分布(正态分布)的概念,强调了均值、标准差与置信度在评估大概率事件中的作用。通过‘三∑原则’解释了在不同标准差内对平均值的置信度,讨论了如何通过减少标准差来增强比较的确定性,并探讨了风险与标准差(即风险)的关系。博客提供了统计分析的实用知识,帮助读者正确理解和应用概率论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

  • 泊松分布描述的是概率非常小的情况下的统计规律性。
  • 学习高斯分布来正确认识大概率事件,随机变量均值的差异和偶然性之间的关系。有随机性的结论,需要有95%的置信度。

发明的荣誉常常是授予最后一个发明者,高斯对正态分布的主要贡献在于,他利用概率分布的平均值和标准差,来定义了正态分布,这种定义更具有普遍意义。

I 预备知识

1.1 正态分布

我们假定事件A经过n次试验后发生了k次,把k的概率分布图画一下,就得到了一个中间鼓起,像倒扣的钟一样的对称图形。

18世纪,数学家棣莫弗和拉普拉斯把这种中间大,两头小的分布称为正态分布
高斯对正态分布的误差(也就是标准差∑)作出了更严格的分析,于是正态分布今天就被命名为高斯分布。

1.2 置信度

对于能够重复的事情,要被检验足够多次之后,置信度才高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java、iOS、Vue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值