python pandas使用记录

1. 获取dataframe结构中某一部分数据 在使用numpy中array格式的矩阵时,我们通常使用如A[2:4,5:10]获取数组中一部分数据,但是dataframe结构的数组就不能这么写,可以使用 iloc 方法,即index locate,另外有个相似的方法 loc , 这个方法是通过co...

2019-02-19 21:08:09

阅读数 40

评论数 0

密度聚类(二)OPTICS和python实现

上一节写的DBSCAN算法的一个缺点是无法对密度不同的样本集进行很好的聚类,就如下图中所示,是DBSCAN获得的聚类结果,第二个图中紫色的点是异常点,由于黄色的样本集密度小,与另外2个样本集的区别很大,这个时候DBSCAN的缺点就显现出来了。 于是有人提出了另外一个算法叫做Ordering ...

2019-01-22 14:02:51

阅读数 773

评论数 0

密度聚类(一)DBSCAN和python实现

密度聚类 密度聚类

2019-01-19 21:35:48

阅读数 579

评论数 3

python matplotlib作图细节

作图存在汉字无法显示 在作图代码前添加如下代码 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False 作图的曲线粗细调整 plt.plot()中有一个参数 ‘linewidt...

2019-01-17 14:42:11

阅读数 35

评论数 0

原型聚类(三)高斯混合聚类和python实现

与k-means、LVQ用原型向量来刻画聚类结构不同,高斯混合(Mixture of Gaussian)聚类采用概率模型来表达聚类原型。 多元高斯分布的概率密度函数定义 (1)p(x)=1(2π)n2(Σ)12e−12(x−μ)TΣ−1(x−μ)p(x)=\frac{1}{(2\pi )^{\...

2018-09-23 22:03:34

阅读数 304

评论数 0

原型聚类(二)学习向量量化(LVQ)和python实现

学习向量量化(Learning Vector Quantization,LVQ)和k-means类似,也属于原型聚类的一种算法,不同的是,LVQ处理的是有标签的样本集,学习过程利用样本的标签进行辅助聚类,个人感觉这个算法更像是一个分类算法。。。 ...

2018-09-23 18:58:30

阅读数 457

评论数 0

原型聚类(一)k均值算法和python实现

原型聚类 原型聚类算法假设聚类结构能通过一组原型刻画,在现实聚类任务中极为常用。通常情形下,算法先对原型进行初始化,然后对原型进行迭代更新求解。这里的“原型”我认为实际上就是“原来的模型”,这类算法企图模拟出生成数据集的模型。 k均值算法(k-means) 若存在一个样本集D={x1,x2,......

2018-09-23 18:23:30

阅读数 189

评论数 0

经典集成学习算法和部分python实现

Boosting Boosting的大概思想是先从初始训练集中训练出一个基学习器,再根据这个基学习器对训练集的判断重新调整训练集,让当前分类器判断错误的样本在后续学习中受到更高的关注,如此不断迭代,直到生成目标数目的基学习器,然后根据权重相加,获得一个强学习器。如下图所示的流程 (...

2018-09-17 18:08:11

阅读数 610

评论数 0

python 从数组中随机选择一部分取出,并从原数组中删除取出的内容

可以使用numpy中的random.choice函数随机选择数组的下标 numpy.random.choice(a, size=None, replace=True, p=None) #a为一维数组或int值,为一维数组时会从该数组中随机选择元素,为int值时会先生成一个np.arange(...

2018-09-15 18:22:56

阅读数 4599

评论数 0

支持向量机(SVM)和python实现(三)

6. python实现 根据前面的一步步推导获得的结果,我们就可以使用python来实现SVM了 这里我们使用iris数据集进行验证,由于该数据集有4维,不容易在二维平面上表示,我们先使用LDA对其进行降维,又因为该数据集有3类样本,我们编写的SVM是二分类的,所以我们将获取的第二个样本的la...

2018-09-11 10:36:09

阅读数 760

评论数 0

支持向量机(SVM)和python实现(二)

4. 松弛向量与软间隔 前面讨论的情况都是样本分布都可以被超平面完美分割的情况,但是在现实任务中,经常会有难以完美划分的情况,就算正好完美划分了样本点,也很难判断这个结果是不是过拟合造成的。 (图来自https://blog.csdn.net/zouxy09/article/details...

2018-09-09 17:34:10

阅读数 849

评论数 0

支持向量机(SVM)和python实现(一)

问题的提出 若存在一个样本集,其中有两类数据,我们希望将他们分类

2018-09-08 17:34:01

阅读数 904

评论数 0

python 获取等间隔的数组

可以使用numpy中的linspace函数 np.linspace(start, stop, num, endpoint, retstep, dtype) #start和stop为起始和终止位置,均为标量 #num为包括start和stop的间隔点总数,默认为50 #endpoint为boo...

2018-09-07 15:25:23

阅读数 5892

评论数 1

tensorflow cifar10训练时遇到的问题 GPU未参与运算

在运行cifar10_train.py时发现程序只使用了我的cpu,完全没使用gpu,导致计算非常缓慢,随后我在需要gpu计算的地方添加了gpu作用域,如下 with tf.device('/gpu:0'): # Build a Graph that computes the l...

2018-05-11 12:06:38

阅读数 545

评论数 2

tensorflow rnn官方教程代码阅读时遇到的函数和类

tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) 在阅读reader.py中的ptb_producer(...

2018-05-04 23:22:45

阅读数 136

评论数 0

基于BP神经网络的DNN和python实现

神经网络可以用来处理回归和分类的问题,典型的神经网络算法即为BP(Back Propagation)算法,我们这里对BP神经网络的构建进行详细讲解,基于BP算法延伸出多层神经网络,并对一些问题提出解决方法。 BP神经网络的原理 1. 单个神经元的构成 如上图所示为一个典型的神经元结构...

2018-04-29 00:19:15

阅读数 4980

评论数 3

决策树分类(decision tree classification)和python实现

决策树分类很符合人类分类时的思想,决策树分类时会提出很多不同的问题,判断样本的某个特征,然后综合所有的判断结果给出样本的类别。例如下图的流程即为一个典型的决策树分类的流程图,这个流程图用来简略的判断一个小学生是否学习很好,当然这里只是举个例子,现在的小学生可是厉害的不行了,这点评判标准完全不够看啊...

2018-04-22 16:48:47

阅读数 6416

评论数 8

线性判别分析(LDA)和python实现(多分类问题)

上一篇写过线性判别分析处理二分类问题https://blog.csdn.net/z962013489/article/details/79871789,当使用LDA处理多分类问题时,通常是作为一个降维工具来使用的。若我们有一个D维的样本集,该样本集包含C个类别共n个样本,希望将D维降维成K维。之前...

2018-04-12 20:29:26

阅读数 1938

评论数 0

线性判别分析(LDA)和python实现(二分类问题)

线性判别分析(Linear Discriminant Analysis, LDA)是一种经典的线性学习方法,思路是将两种数据投影到一条直线上,使这两种数据之间尽可能远离,且同类数据尽可能聚集在一起 假如我们有如上图所示的2种数据集 $$X1=\left \{ x_{1}^{1}, x_{2...

2018-04-09 21:09:46

阅读数 2768

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭