自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 利用KNN算法进行分类预测:可自定义训练测试数据比例,附清晰易用Matlab代码,使用KNN算法进行分类预测,并灵活设置训练测试数据比例,使用清晰易用的Matlab代码

通过选取合适的训练数据集和测试数据集,编写清晰易用的Matlab代码,并进行适当的数据预处理和特征选取,我们可以实现准确的分类预测。同时,通过选择合适的K值和距离度量方法,并使用评估指标和混淆矩阵进行分析,我们可以进一步了解算法的性能和效果。在实际应用中,KNN分类预测可以用于各种领域的数据分析和预测任务,如医疗诊断、金融风险评估等。在使用KNN算法进行分类预测之前,我们需要准备好合适的数据,并对其进行相应的预处理。在这个算法中,我们可以通过选取适当的训练数据集,并利用KNN算法来进行分类预测。

2024-06-11 20:06:57 305

原创 利用BP神经网络进行回归拟合求解各指标权重的方法及Matlab代码解析

通过建立非线性的拟合模型,并使用Matlab中的神经网络工具进行训练和预测,我们可以得到各指标对输出的权重值。BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,可以通过对输入与输出之间的非线性拟合关系建模,进而求解各指标的权重值。通过设置网络的输入层、隐藏层和输出层的神经元数量,并选择适当的激活函数,我们可以构建一个适合实际问题的神经网络模型。我们希望通过建立非线性的拟合模型,来求解每个指标对输出的影响程度,即各指标的权重值。

2024-06-11 20:05:12 1037

原创 Copula二维数据拟合与模拟:边缘分布、Copula函数及蒙特卡洛模拟,Copula二维最全代码:边缘分布拟合、联合分布拟合和蒙特卡洛数据模拟

3-copula的拟合寻优,具体包括Gaussian、t、Frank、Gumbel、Clayton等5种常用copula函数,计算内容包括偏度、峰度,copula参数的拟合,5种copula的上下尾部相关系数,5种copula的AIC和BIC值,Kendall秩相关系数和Spearman秩相关系数,Copula的密度函数和分布函数图,根据平方欧氏距离求取最优copula。通过边缘分布的拟合寻优、Copula的拟合寻优和蒙特卡洛模拟,可以得到准确、可靠的数据结果,为用户提供了更多的分析和决策依据。

2024-06-11 20:03:26 1142

原创 三种智能算法在海洋捕食者算法MPA、粒子群算法PSO、遗传算法GA的平面度评定中的分析与实现,海洋捕食者算法MPA、粒子群算法PSO、遗传算法GA在平面度评定中的应用——附带详细的Matlab代码

综上所述,本文介绍了基于海洋捕食者算法(MPA)、粒子群算法(PSO)和遗传算法(GA)三种算法的平面度评定方法,并提供了相应的Matlab代码和详细的备注。本文将介绍基于海洋捕食者算法(MPA)、粒子群算法(PSO)和遗传算法(GA)三种算法的平面度评定方法,并提供了相应的Matlab代码,并附有详细的备注,以方便使用。通过选择、交叉和变异等操作,GA可以不断改进解的质量,最终找到最优解,从而实现准确的平面度评定。此外,为了方便用户使用这些算法,我们提供了基于Matlab的代码,并附有详细的备注。

2024-06-11 20:01:39 534

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除