复杂度分析是整个算法学习的精髓
只要掌握了他,数据结构和算法的内容基本上就掌握了一半
为什么需要复杂度分析?
其实我可以把代码跑一遍,通过统计,监控就能得到算法执行的时间和占用内存大小。其实这是一种事后统计法,这种统计方法局限很大。
1、测试结果依赖测试环境
和测试机器的配置有关,机器越好,性能越好。
2、测试数据受数据规模影响
然而,我们需要一个不用具体的测试数据来测试,就可以粗略估算算法的执行效率和方法。
大O复杂度表示方法
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
先来估算下这段代码的执行时间?
假设每一行代码的执行时间为unit_time
对于 CPU,每一行数据都执行着类似的操作:读数据-运算-写数据
第2,3行代码分别需要1个unit_time, 4,5行运行了n遍,因此需要2n*unit_time的执行时间,所以这段代码的执行时间就是(2n+2)*unit_time。可以看出来,所有代码的执行时间T(n)与每行代码的执行次数成正比
我们可以把这个规律总结成一个公式:
T
(
n
)
=
O
(
f
(
n
)
)
T(n) = O(f(n))
T(n)=O(f(n))
T(n):代码执行的时间
n代表数据规模的大小
f(n)每行代码执行次数总和
公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比
大O时间复杂度表示法,实际上并不代表具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长变化大趋势,也称为渐进时间复杂度,简称时间复杂度。
当n很大时,你可以把它想象成10000 100000,公式中的低阶,常量,系数三部分并不左右增长趋势,所以可以忽略。
就可以记为:T(n) = O(n)。
时间复杂度分析
1、只关注循环执行次数最多的一段代码
只需记录一个最大阶的量级就可以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了
2、加法法则:总复杂度等于量级最大的那段代码的复杂度
3、乘法法则:嵌套代码的复杂度等于嵌套内外复杂度的乘积
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).也就是说,假设 T1(n) = O(n),T2(n) = O(n2),则 T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环
int cal(int n) {
int ret = 0;
int i = 1;
for (; i < n; ++i) {
ret = ret + f(i);
}
}
int f(int n) {
int sum = 0;
int i = 1;
for (; i < n; ++i) {
sum = sum + i;
}
return sum;
}
几种常见时间复杂度实例分析
来源:极客时间