算法复杂度分析,如何分析,统计算法的执行效率和资源消耗

复杂度分析是整个算法学习的精髓

只要掌握了他,数据结构和算法的内容基本上就掌握了一半

为什么需要复杂度分析?

其实我可以把代码跑一遍,通过统计,监控就能得到算法执行的时间和占用内存大小。其实这是一种事后统计法,这种统计方法局限很大。
1、测试结果依赖测试环境
和测试机器的配置有关,机器越好,性能越好。
2、测试数据受数据规模影响

然而,我们需要一个不用具体的测试数据来测试,就可以粗略估算算法的执行效率和方法。

大O复杂度表示方法

int cal(int n) {   
	int sum = 0;   
	int i = 1;   
	for (; i <= n; ++i) {     
	sum = sum + i;   
	}  
	return sum; 
}

先来估算下这段代码的执行时间?
假设每一行代码的执行时间为unit_time
对于 CPU,每一行数据都执行着类似的操作:读数据-运算-写数据
第2,3行代码分别需要1个unit_time, 4,5行运行了n遍,因此需要2n*unit_time的执行时间,所以这段代码的执行时间就是(2n+2)*unit_time。可以看出来,所有代码的执行时间T(n)与每行代码的执行次数成正比

我们可以把这个规律总结成一个公式:
T ( n ) = O ( f ( n ) ) T(n) = O(f(n)) T(n)=O(f(n))
T(n):代码执行的时间
n代表数据规模的大小
f(n)每行代码执行次数总和
公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比

大O时间复杂度表示法,实际上并不代表具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长变化大趋势,也称为渐进时间复杂度,简称时间复杂度

当n很大时,你可以把它想象成10000 100000,公式中的低阶,常量,系数三部分并不左右增长趋势,所以可以忽略。

就可以记为:T(n) = O(n)。

时间复杂度分析
1、只关注循环执行次数最多的一段代码
只需记录一个最大阶的量级就可以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了

2、加法法则:总复杂度等于量级最大的那段代码的复杂度

3、乘法法则:嵌套代码的复杂度等于嵌套内外复杂度的乘积
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).也就是说,假设 T1(n) = O(n),T2(n) = O(n2),则 T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环


int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

几种常见时间复杂度实例分析

在这里插入图片描述
来源:极客时间
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Anguser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值