动态规划--最长上升子序列问题(LIS) O(n^2) ,O(nlogn)

本文介绍了动态规划解决最长上升子序列(LIS)问题的两种算法,分别具有O(n^2)和O(nlogn)的时间复杂度。详细阐述了O(n^2)解法的动态规划方程,并提供了O(nlogn)解法的状态转移方程和关键性质。通过分析低价购买问题,展示了动态规划在实际问题中的应用。
摘要由CSDN通过智能技术生成

LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。

*********************************************************************************

先回顾经典的O(n^2)的动态规划算法:

设a[t]表示序列中的第t个数,dp[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设dp[t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:dp[t] = max{1, dp[j] + 1} (j = 1, 2, ..., t - 1, 且a[j] < a[t])。

一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的: 
 在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。 


代码实现如下:

#include<iostream>
using namespace std;
#define max(a,b) a>b?a:b
int main()
{
	int n, i, j, dp[101], x[101], max_len;
	while (cin >> n)
	{
		for (i = 0; i < n; i++)
			cin >> x[i];
		dp[0] = 1;//表示以x[0]为子序列最右边的长度位1
		for (i = 1; i < n; i++)
		{
			dp[i] = 1;//初始化每种情况最小值为1
			for (j = 0; j < i; j++)
			{
				if (x[i]>x[j] && dp[j] + 1>dp[i])//从0-i进行扫描,查找边界小于当前最优解长度相等的解优化最优解
					dp[i] = dp[j] + 1;//如果允许子序列相邻元素相同  x[i]>=x[j]&&dp[j]&
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值