动态规划:最长递增子序列问题(LIS)的时间复杂度由O(n^2)降低为O(nlogn)的改良算法的自我理解

问题:原算法的时间复杂度为n^2,如何降低其时间复杂度?
着眼点:原算法在计算每一个dp[i]时都需要将前序所有dp[i]遍历一遍才能获得当前的dp[i],如何减少这种遍历?

解决方法:

  • 本算法原理:在原算法中,每接触到一个新元素时,我们考虑以它为结尾的最长递增子序列长度是不会考虑前面元素具体的分布的,即哪些元素是构成LIS的,哪些不是,我们只是记录了长度,而事实上这种分布可以帮助我们统计后面新元素加入后的LIS的长度变化。
    如果我们把这种分布记录下来,那么在遇到新的元素时,我们就不用再考虑遍历前面所有的元素以求加入新元素后的最大LIS长度,我们只需要知道当前LIS的最大元素是谁,那么新元素大于这个最大元素,LIS的长度就能加1,如果小于等于最大元素,长度就不会变,然后记下新的元素分布。
    又由上可知,我们真正需要记录的元素分布,其实并不需要记录每个LIS长度下所有构成元素的排列,我们所需要的仅仅是记录每个LIS长度下的最大元素亦即尾部元素,然后用于接触新元素时的比较。
    • 存在的问题一:由于同一长度的递增子序列可能有很多个,这意味着我们需要选取该长度下具有最小尾部元素的递增子序列。
      • 为什么是“最小”?毫无疑问同一长度的极大递增子序列可能有很多个,那么为了让后续的元素加入考虑后,子序列的长度尽可能增加,新元素的值要大于当前递增子序列的尾部元素,那么挑选其中尾部元素最小的子序列才最有可能。
    • 存在的问题二:在每加入考虑一个新的元素后,不仅仅是新长度下最小尾部元素的记录(长度增加),如果长度未曾增加,对于前面已经记录某长度下的最小尾部元素也是存在影响的,所以每一轮需要检查是否会造成这种影响,如果有,则需要更新,因为新增的元素可能成为前面较小长度下的尾部元素。
  • 具体如何计算加入考虑新元素后的最长递增子序列长度?
    • 如果新的元素比当前LIS的尾部元素要大,毫无疑问,最长递增子序列的长度将要增加1,此元素即为最新长度下的最小尾部元素;
    • 如果新的元素比当前LIS的尾部元素要小,毫无疑问,LIS的长度将不会改变。至于该长度下的最小尾部元素,则有可能需要更新,因为新元素有可能刚好介于某两个长度下的极大LIS的尾部元素之间(例如已有LIS各长度下最小尾部元素记录序列4 6 7,如果新元素是5,介于4和6之间,因此长度为2的LIS的最小尾部元素将不再是6,将变成5,最小尾部元素序列变为4 5 7),那么显然较长LIS的尾部元素显然有更好选择,新元素的值比较长LIS的尾部元素值要小,所以需要更新。
    • 要找到更新的位置,又因为记载了各个长度下LIS的最小尾部元素的数组是有序递增的,因此可以用二分查找法。
    • 相较于原算法,内循环去顺序遍历数组的方法,本算法只采用二分查找,大大降低了了复杂度
  • 算法实现:记len为最长递增子序列的长度,minRearElem[len]为len长度下的LIS的最小尾部元素,每接触一个新元素seq[i],比较它与minRearElem[len]的大小比较:
    • 若seq[i]>minRearElem[len],则minRearElem[++len]=seq[i];
    • 否则利用二分查找,寻找到minRearElem[j-1]<=seq[i]<=minRearElem[j],然后令minRearElem[j]=seq[i];
      如此一直到外循环遍历完所有元素,即可获知LIS的长度。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
动态规划实现最长递增子序列最长递增子序列问题是指在一个给定的序列中,找到一个子序列,使得这个子序列中的元素是单调递增的,并且在原序列中的位置是不下标连续的。例如,序列{1,3,2,4,5,6,7,8}的最长递增子序列为{1,3,4,5,6,7,8},长度为7。 动态规划算法的思路是:定义一个辅助数组b,b[i]表示以a[i]为结尾的最长递增子序列的长度。对于每个i,遍历0~i-1之间的j,如果a[j]<=a[i]并且b[j]的值最大,那么b[i]=b[j]+1。最后,b数组的最大值即为所求的最长递增子序列的长度。 以下是动态规划实现最长递增子序列的Python代码: ```python def LIS(a): n = len(a) b = [1] * n for i in range(1, n): for j in range(i): if a[j] <= a[i] and b[j] + 1 > b[i]: b[i] = b[j] + 1 return max(b) ``` 时间复杂度为O(n^2)。 0-1背包问题复杂度分析: 0-1背包问题是指有n个物品和一个容量为V的背包,每个物品有一个重量w[i]和一个价值v[i],要求选择若干物品放入背包中,使得在不超过背包容量的前提下,背包中物品的总价值最大。这是一个NP完全问题,没有多项式时间复杂度的解法。 常见的解法有贪心算法动态规划算法。贪心算法时间复杂度为O(nlogn),但是不能保证得到最优解;动态规划算法时间复杂度为O(nV),可以得到最优解,但是当V很大时,时间复杂度会非常高。 因此,在实际应用中,需要根据具体情况选择合适的算法。如果V较小,可以使用动态规划算法;如果V较大,可以使用贪心算法或者其他启发式算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Milk_exe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值