深度学习-多层感知机的简洁实现

多层感知机的简洁实现,如何调整代码,由一个隐藏层变为三个隐藏层
一个隐藏层

#导入所需的包或模块
import torch
from torch import nn
from torch.nn import init#nn模型中初始化模块
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
print(torch.__version__)
#定义模型(一个隐藏层)
num_inputs,num_outputs,num_hiddens=784,10,256
#序列模型
net=nn.Sequential(
      d2l.FlattenLayer(),#实现对x形状的转换
      nn.Linear(num_inputs,num_hiddens),#HW1+b1
      nn.ReLU(),#H=ReLU(XW+b)
      nn.Linear(num_hiddens,num_outputs),#HW2+b2
      )
for params in net.parameters():
    init.normal_(params,mean=0,std=0.01)#参数初始化
#读取数据并训练模型
batch_size=256
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
loss=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.SGD(net.parameters(),lr=0.1)
num_epochs=10
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)

三个隐藏层
更改为三个隐藏层,只需要把一个隐藏层中定义模型的代码部分换成如下代码即可。

num_inputs,num_outputs,num_hiddens1,num_hiddens2,num_hiddens3=784,10,256,256,256
#序列模型
net=nn.Sequential(
      d2l.FlattenLayer(),#实现对x形状的转换
      nn.Linear(num_inputs,num_hiddens1),
      nn.ReLU(),
      nn.Linear(num_hiddens1,num_hiddens2),
      nn.ReLU(),
      nn.Linear(num_hiddens2,num_hiddens3),
      nn.ReLU(),
      nn.Linear(num_hiddens3,num_outputs),
      )
for params in net.parameters():
    init.normal_(params,mean=0,std=0.01)#参数初始化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值