机器学习面试题库:K-means

本文详细介绍了K-means聚类算法的原理、工作流程,包括K的选取方法如手肘法和轮廓系数法,以及常见的距离度量方式。此外,还探讨了K-means对空簇的处理、如何评估聚类效果以及算法的优缺点。文章最后对比了K-means与DBSCAN算法,帮助读者理解何时选择适合的聚类算法。
摘要由CSDN通过智能技术生成

一、简述K-means算法的原理及工作流程?

原理:

        K-means是一个无监督的聚类算法。它的主要目的是对同一组数据对象进行分类。其原理是基于样本间的相似性来聚类分析的,即将所有样本分为K个簇,使得同一个簇间中样本相似性最高,不同簇间样本相似性最低。

工作流程:

1.初始化:随机选择K个样本作为初始化簇心

2.分配:对于每个样本,计算其到每个簇心的距离,并将分配到距离最短的簇中

3.重新计算簇心:重新计算每个簇的簇心

4.重复步骤2和步骤3,直至簇心不在发生变化,或者达到预定的聚类次数。

二、K-means聚类中的K如何取?

确定K的值是K-means聚类算法中最重要的问题之一,一般可以采用以下两种方法来确定K的合适取值:

  1. 手肘法:通过计算不同K值下聚类结果的SSE(误差平方和)或SSB(组间平方和)值,观察这些指标与K值的关系,找到SSE或SSB下降速度趋于平稳的K值,即所谓的“肘部”位置,作为合适的聚类数。

  2. 轮廓系数法:通过计算不同K值下聚类结果中每个样本的轮廓系数,综合考虑聚类结果的紧密度和分离度,找到轮廓系数达到最大值时对应的K值,作为最佳聚类数。

需要注意的是,以上方法只是参考,无法保证一定能够得到最优的K值,实际应用中可能需要结合业务需求和实际场景综合考虑。

三、常见的距离度量方式有那些?

常见的距离度量方式有以下几种:

  1. 欧几里得距离(Euclidean Distance):是指在m维空间中两个点之间的真实距离,即勾股定理。在实际应用中,欧几里得距离被广泛应用于K-means算法中。

  2. 曼哈顿距离(Manhattan Distance):是指在m维空间中两点之间的城市街区距离,即横、纵坐标绝对值的和。

  3. 闵可夫斯基距离(Minkowski Distance):是指

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值