机器学习
文章平均质量分 82
zackzhaoyang
这个作者很懒,什么都没留下…
展开
-
机器学习的模型评估
机器算法有很多,各种模型的在不同的场景下各有优劣。所以需要一些方法来对机器学习的方法有一个判断。原创 2016-04-01 21:07:27 · 1565 阅读 · 0 评论 -
机器学习之贝叶斯分类
贝叶斯在数据较少的情况下仍然有效,可以处理多类别问题。但是对于输入数据的准备方式比较敏感。原创 2016-04-02 20:44:17 · 2532 阅读 · 0 评论 -
机器学习之回归模型
回归模型包括线性回归和非线性回归。我们先介绍了简单的线性回归,在此基础上,拓展到局部加权线性回归,岭回归,前向逐步回归等。非线性回归主要介绍了逻辑回归。最后还拓展了一点线性判别分析和二分类推广到多分类的策略。原创 2016-04-05 19:37:44 · 8810 阅读 · 0 评论 -
机器学习部分数学基础
本文涉及矩阵,基本优化方法(拉格朗日,梯度下降,牛顿方法等)对一些常见方法的进行总结记录。原创 2016-04-07 15:32:41 · 1150 阅读 · 0 评论 -
机器学习之SVM分类
通俗来说,SVM就是找到一个平面把不同类别的样本分开。这个平面在一维中是一个点,二维中是一条线,三维是一个平面。(最近小忙,先简单更下理论,过段时间更新代码)。原创 2016-04-14 23:33:54 · 2147 阅读 · 0 评论 -
机器学习之kNN算法
KNN(k-nearest Neighbor)是一种常用的监督学习的分类方法。工作原理非常简单:给定测试样本,基于某种距离找出训练集中与其最靠近的k个样本,然后基于这k个邻居采用“投票法”,即把k个样本中出现次数最多的类别作为预测结果。原创 2016-03-30 22:25:33 · 1753 阅读 · 0 评论