Improved Dense Trajectory用法及源码分析

本文详细介绍了cvpr2014年Ivan Laptev的教程中提到的iDT(Improved Dense Trajectory)特征提取方法,包括如何通过DenseTrackStab代码实现iDT,并分析了关键部分如Video.cpp和DenseTrackStab的光流计算、特征提取过程。此外,还讨论了如何使用BoundingBox消除背景噪声,以及在消除相机抖动和构建金字塔模型后的iDT特征提取步骤。
摘要由CSDN通过智能技术生成

cvpr2014的Ivan Laptev大神的tutorial 中总结IDT+fisher coding是目前state-of-art的人体动作行为算法。现在基本涉及的论文效果都要跟iDT进行比对。在此写下自己对整个代码的理解,以方便学习。若有不当之处敬请指出。转载请提供原文链接出处。

LEAR实验室 这个实验室个人感觉很不错,放出来的代码基本都能work,而且有不错的的效果。

早期版本的dense trajectory代码下载,后来加入了SURF消除camera jitter以及Bounding Boxes消除了其他背景噪声,于是有了现在的iDT(improved Dense Trajectory)(http://lear.inrialpes.fr/people/wang/dense_trajectories).

首先我们先让代码运行起来看到效果再来分析一下它的实现机制吧。首先解压文件,在DenseTrackStab.cpp文件中看到:

int show_track = 0; // set show_track = 1, if you want to visualize the trajectories

为了有更好的可视化效果,我们把show_track变量改成1。
下面开始编译:在解压的

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值