一句话说清深度学习中的batch size、iteration、Epoch

本文通过形象化的比喻,解释了机器学习中Epoch、BatchSize与Iteration的概念。以100年为一个世纪(Epoch),10个年代(Iteration),每个年代10年(BatchSize)为例,阐述了这些概念在波士顿房价数据集上的应用。
摘要由CSDN通过智能技术生成

形象化说明:把100年(样本总数N)作为一个整体,100年为1个世纪(Epoch),可分为10个年代(Iteration),每个年代有10年(BatchSize)。

                                                                   N = Iteration * BatchSize

在波士顿房价数据集中,总样本为506条,若划分成批次,每批次20条(BatchSize),可划分为26批,即迭代(Iteration)26次遍历完成),506条全训练1遍为1个Epoch。数据集1个Epoch训练的结果通常不理想,因此一般要训练上百个Epoch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值