【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄

介绍

本人机器学习小白,通过语言大模型+百度进行搜索,磕磕绊绊的实现了初步效果,能有一些锁头效果,但识别速度不是非常快,且没有做敌友区分,效果不是非常的理想,但在4399小游戏中爽一下还是可以的!。

思路

1.先通过yolov5实现对电脑屏幕的实时检测,只获取中心部分画面,减少其他人物的识别,提高识别速度
2.筛选只留下【person】的人物框
3.获取第一个框的坐标点,并计算出框的中上坐标点,以此粗略的当作人物的头部
4.操作鼠标定位的中心点
5.模拟鼠标左键点击,完成射击

代码

1.先下载github上yolov5的项目

git clone https://github.com/ultralytics/yolov5.git

2.在项目中添加test.py

import time

import cv2
import mediapipe as mp
import  pyautogui
import  pydirectinput
import numpy as np
import tkinter as tk
import torch
import warnings

warnings.filterwarnings("ignore", category=FutureWarning, module="torch.cuda.amp.autocast")

root = tk.Tk()
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
root.destroy()

# 获取屏幕的尺寸
crop_width = 500
crop_height = 500
start_x = (screen_width - crop_width) // 2
start_y = (screen_height - crop_height) // 2




# 加载预训练模型
model = torch.hub.load('./', 'custom', path='yolov5s.pt', source='local')



def readScreen():
    # 初始化MediaPipe姿态检测对象
    mp_pose = mp.solutions.pose
    pose = mp_pose.Pose(static_image_mode=Fa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值