数字图像处理(4): 遥感影像中 光谱分辨率、空间分辨率、时间分辨率、全色图像、多光谱图像、高光谱图像 的区别

目录

1 光谱分辨率、空间分辨率、时间分辨率

2 全色图像、多光谱图像、高光谱图像

2.1 全色图像

2.2 多光谱图像

2.3 高光谱图像

参考资料


1 光谱分辨率、空间分辨率、时间分辨率

遥感(Remote Sensing),可以理解为遥远的感知。遥感技术利用搭载在遥感平台上面的传感器对目标地物发射或反射的电磁波信息记录下来从而形成遥感影像(或其他遥感数据)。其中分辨率作为传感器成像系统对输出影像细节辨别能力的一种度量,是遥感影像应用价值的重要技术指标,而对“影像细节”的不同度量则形成了多种不同类型的分辨率,主要有空间分辨率光谱分辨率时间分辨率

(1)空间分辨率:是对遥感影像空间细节信息的辨别能力,指传感器能够分辨最小目标地物大小,是实际卫星观测影像中的一个像素所对应的地面范围。如,WorldView-2卫星全色图像空间分辨率是0.5m,指的是影像中的一个像素所对应的实际地面大小为0.5m \times 0.5m,高空间分辨率图像对于影响目标地物的识别和目视解译等具有重要的作用;

(2)光谱分辨率:是对影像中地物波谱细节信息的分辨能力,是卫星传感器接收地物箱射波谱时所能辨别的最小波长间隔,当间隔较小时,光谱分辨率相应就会越髙,在同样的波谱范围下,通常影像波段数越多,光谱分辨率越高,如高光谱影像往往比多光谱影像具有更髙的光谱分辨率,高光谱分辨率对于影像地物的分类识别等具有重要意义;

(3)时间分辨率:是对同一地点的重复观测能力,通常也把时间分辨率称为重访周期,重访周期越短,时间分辨率越髙。髙时间分辨率对于地物的动态变化检测等具有重要作用。

 

据统计,超过70%的光学对地观测卫星和航空摄影系统同时提供全色图像与多光谱图像,其中,全色图像具有高空间分辨率,但其只有一个波段;而多光谱图像具有多个光谱波段,具有较高的光谱分辨率,然而其空间分辨率相对较低。因此,全色/多光谱融合技术得以提出和发展,该技术通过集成全色和多光谱影像之间的空、谱互补优势,融合得到高空间分辨率多光谱影像。

 

那么问题来了,为什么要用全色图像和多光谱图像? 为什么要融合?直接用一种图像不就行了,下面慢慢介绍。

具体来说,遥感影像空间分辨率光谱分辨率的相互制约主要受下两方面因素的影响。

(1)影像信噪比的限制。通常全色影像具有较宽的波谱范围(大多数涵盖可见光、近红外),因此,进入其中的光子能量较多,其信噪比自然也就较好,成像质量较髙;而相比于全色波段,多光谱影像各波段光谱范围较窄,进入其中的光子能量较少,为了收集更多的光子能量以确保多光谱影像具有较髙的信噪比,其所在传感器的探测(感光)单元尺寸往往较大,送也就意味着卫星传感器拍摄时的瞬时视场角(IFOV)较大,影像的空间分辨率更低。

(2)数据存储与传输的限制。在数据存储方面,高分多光谱影像比低分多光谱影像和全色影像数据存储量大,这不仅对遥感卫星系统的数据存储带来一定的压力,同时对数据的快速传输将带来一定的困难。

综上所述,将全色图像和多光谱图像融合,结合二者的优点,才能在实际应用中提供更好地数据来检测和分析等。

下图分别为空间分辨率(全色图像)和光谱分辨率(多光谱图像)的示意图。

 

2 全色图像、多光谱图像、高光谱图像

2.1 全色图像

全色图像是单通道的,其中全色是指全部可见光波段0.38~0.76um,全色图像为这一波段范围的混合图像。因为是单波段,所以在图上显示为灰度图片。全色遥感图像一般空间分辨率高,但无法显示地物色彩,也就是图像的光谱信息少。 实际操作中,我们经常将全色图像与多波段图像融合处理,得到既有全色图像的高分辨率,又有多波段图像的彩色信息的图像。下图是WorldView-3 卫星拍摄的全色图像的例子。

 

2.2 多光谱图像

多光谱图像是指对地物辐射中多个单波段的摄取。得到的影象数据中会有多个波段的光谱信息。若取其中RGB三个波段的信息显示,就是RGB彩色图像。一般文献显示出来的多光谱图像,其实是RGB三通道的图像,有的波段不是人肉眼可见范围内的。下图是WorldView-3 卫星拍摄的多光谱图像RGB三波段显示的例子。

 

2.3 高光谱图像

高光谱图像则是由很多通道组成的图像,具体有多少个通道,这需要看传感器的波长分辨率,每一个通道捕捉指定波长的光。把光谱想象成一条直线,由于波长分辨率的存在,每隔一定距离才能“看到”一个波长。“看到”这个波长就可以收集这个波长及其附近一个小范围的波段对应的信息,形成一个通道。也就是一个波段对应一个通道。多光谱图像其实可以看做是高光谱图像的一种情况,即成像的波段数量比高光谱图像少。

 

参考资料

[1] https://blog.csdn.net/mihou_qust/article/details/78901738

[2] https://blog.csdn.net/chaolei3/article/details/79404806

[3] 孟祥超. 多源时—空—谱光学遥感影像的变分融合方法[D].武汉大学,2017.

[4] 吴鹏海. 多传感器遥感数据的时空定量信息融合方法研究[D].武汉大学,2014.

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页