[LeetCode]215. 数组中的第K个最大元素

题目

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

说明:
你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

解题思路

解法一:小根堆

由于Java中优先队列默认是小根堆,所以可以遍历整个数组,在 for 循环里面判断小根堆的 size() 是否大于 k 个数,是的话就 poll() 出去。整个 for 循环结束之后堆中剩下来的就是整个数组最大的 k 个数,堆顶即第 k 大的数。

复杂度分析:
时间复杂度:O(nlogk),其中 n 是数组的长度。由于小根堆实时维护前 k 大值,所以插入删除都是 O(logk) 的时间复杂度,最坏情况下数组里 n 个数都会插入,所以一共需要 O(nlogk) 的时间复杂度。
空间复杂度:O(k),因为小根堆里最多 k 个数。

解法二:快速选择

我们对数组 a[l⋯r] 做快速排序的过程是:
1) 将数组 a[l⋯r] 「划分」成两个子数组 a[l⋯q−1]、a[q+1⋯r],使得 a[l⋯q−1] 中的每个元素小于等于 a[q],且 a[q] 小于等于 a[q+1⋯r] 中的每个元素。其中,计算下标q 也是「划分」过程的一部分。
2) 通过递归调用快速排序,对子数组 a[l⋯q−1] 和 a[q+1⋯r] 进行排序。

上文中提到的 「划分」 过程是:从子数组a[l⋯r] 中选择任意一个元素 x 作为主元,调整子数组的元素使得左边的元素都小于等于它,右边的元素都大于等于它, x 的最终位置就是 q。由此可以发现每次经过「划分」操作后,我们一定可以确定一个元素的最终位置,即 x 的最终位置为 q,并且保证 a[l⋯q−1] 中的每个元素小于等于 a[q],且 a[q] 小于等于 a[q+1⋯r] 中的每个元素。所以只要某次划分的 q 为倒数第 k 个下标的时候,我们就已经找到了答案,至于 a[l⋯q−1] 和 a[q+1⋯r] 是否是有序的,我们不关心。

因此我们可以改进快速排序算法来解决这个问题:在分解的过程当中,我们会对子数组进行划分,如果划分得到的 q 正好就是我们需要的下标,就直接返回 a[q];否则,如果 q 比目标下标小,就递归右子区间,否则递归左子区间。

复杂度分析:
时间复杂度:O(n)。
空间复杂度:O(logn)。

:快速排序的性能和「划分」出的子数组的长度密切相关。如果每次规模为 n的问题我们都划分成 1 和 n - 1,每次递归的时候又向 n−1 的集合中递归,这种情况是最坏的,时间代价是 O(n ^ 2),例如顺序数组或倒序数组的情况。我们可以引入随机化来加速这个过程,可以在循环一开始的时候,交换第 1 个元素与它后面的任意 1 个元素的位置,它的时间代价的期望是 O(n)。

代码

解法一:小根堆

class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> heap = new PriorityQueue<>();
        // 含比较器的写法,如果是大根堆,则是 (a,b) -> b-a
        //PriorityQueue<Integer> heap = new PriorityQueue<>((a,b) -> a-b);
        for(int num : nums){
            heap.add(num);
            if(heap.size()>k){
                heap.poll();
            }
        }
        return heap.peek();
    }
}

解法二:快速选择

import java.util.Random;
class Solution {
    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        int low = 0;
        int high = len-1;
        int target = len-k;
        while(true){
            int index = partition(nums, low, high);
            if(index == target){
                return nums[index];
            }else if(index < target){
                low = index+1;
            }else{
                high = index-1;
            }
        }
    }

    private int partition(int[] nums, int start, int end){
        // 随机化
        if(start<end){
            // 生成 [0, end-start]的随机int值
            Random random = new Random();
            int randomIndex = random.nextInt(end-start+1);
            swap(nums, start, start+randomIndex);
        }
        // 基准数据
        int pivot = nums[start];
        while(start < end){
            // 当队尾的元素大于等于pivot时,向前挪动end指针
            while(start<end && nums[end]>=pivot){
                end--;
            }
            // 如果队尾元素小于pivot了,需要将其赋值给start
            // nums[start] = nums[end];
            // 如果队尾元素小于pivot了,将这个比pivot小的元素交换到前半部分
            swap(nums, start, end);
            // 当队首元素小于等于pivot时,向前挪动start指针
            while(start<end && nums[start]<=pivot){
                start++;
            }
            // 当队首元素大于pivot时,需要将其赋值给end
            // nums[end] = nums[start];
            // 如果队首元素大于pivot了,将这个比pivot大的元素交换到后半部分
            swap(nums, start, end);
        }
        // 如果上面用的是交换的话,此处就不用再赋值了
        // nums[start] = pivot;
        // 返回基准元素所在的位置
        return start;
    }

    private void swap(int[] nums, int i, int j){
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
}
展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值