第十一周项目1-(2)二叉树构造的算法验证--由后序和先序构造二叉树

/*      
*烟台大学计算机与控制工程学院       
*作    者:臧新晓    
*完成日期:2016年11月6日   
*问题描述:任何n(n>0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一地确定。  
*/      

//(1)btree.h  

#define MaxSize 100      
      
typedef char ElemType;      
typedef struct node      
{      
    ElemType data;              //数据元素      
    struct node *lchild;        //指向左孩子      
    struct node *rchild;        //指向右孩子      
} BTNode;      
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链      
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针      
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针      
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针      
int BTNodeDepth(BTNode *b); //求二叉树b的深度      
void DispBTNode(BTNode *b); //以括号表示法输出二叉树      
void DestroyBTNode(BTNode *&b);  //销毁二叉树      
BTNode *CreateBT2(char *post,char *in,int n);      

//(2)btree.cpp的代码

#include <stdio.h>      
#include <malloc.h>      
#include "btree.h"      
      
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链      
{      
    BTNode *St[MaxSize],*p=NULL;      
    int top=-1,k,j=0;      
    char ch;      
    b=NULL;             //建立的二叉树初始时为空      
    ch=str[j];      
    while (ch!='\0')    //str未扫描完时循环      
    {      
        switch(ch)      
        {      
        case '(':      
            top++;      
            St[top]=p;      
            k=1;      
            break;      //为左节点      
        case ')':      
            top--;      
            break;      
        case ',':      
            k=2;      
            break;                          //为右节点      
        default:      
            p=(BTNode *)malloc(sizeof(BTNode));      
            p->data=ch;      
            p->lchild=p->rchild=NULL;      
            if (b==NULL)                    //p指向二叉树的根节点      
                b=p;      
            else                            //已建立二叉树根节点      
            {      
                switch(k)      
                {      
                case 1:      
                    St[top]->lchild=p;      
                    break;      
                case 2:      
                    St[top]->rchild=p;      
                    break;      
                }      
            }      
        }      
        j++;      
        ch=str[j];      
    }      
}      
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针      
{      
    BTNode *p;      
    if (b==NULL)      
        return NULL;      
    else if (b->data==x)      
        return b;      
    else      
    {      
        p=FindNode(b->lchild,x);      
        if (p!=NULL)      
            return p;      
        else      
            return FindNode(b->rchild,x);      
    }      
}      
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针      
{      
    return p->lchild;      
}      
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针      
{      
    return p->rchild;      
}      
int BTNodeDepth(BTNode *b)  //求二叉树b的深度      
{      
    int lchilddep,rchilddep;      
    if (b==NULL)      
        return(0);                          //空树的高度为0      
    else      
    {      
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep      
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep      
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);      
    }      
}      
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树      
{      
    if (b!=NULL)      
    {      
        printf("%c",b->data);      
        if (b->lchild!=NULL || b->rchild!=NULL)      
        {      
            printf("(");      
            DispBTNode(b->lchild);      
            if (b->rchild!=NULL) printf(",");      
            DispBTNode(b->rchild);      
            printf(")");      
        }      
    }      
}      
void DestroyBTNode(BTNode *&b)   //销毁二叉树      
{      
    if (b!=NULL)      
    {      
        DestroyBTNode(b->lchild);      
        DestroyBTNode(b->rchild);      
        free(b);      
    }      
}      
BTNode *CreateBT2(char *post,char *in,int n)      
/*post存放后序序列,in存放中序序列,n为二叉树结点个数,   
本算法执行后返回构造的二叉链的根结点指针*/      
{      
    BTNode *s;      
    char r,*p;      
    int k;      
    if (n<=0) return NULL;      
    r=*(post+n-1);                          //根结点值      
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s      
    s->data=r;      
    for (p=in; p<in+n; p++)                 //在in中查找根结点      
        if (*p==r)      
            break;      
    k=p-in;                                 //k为根结点在in中的下标      
    s->lchild=CreateBT2(post,in,k);         //递归构造左子树      
    s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树      
    return s;      
}      

//(3)main.cpp

#include<stdio.h>      
#include"btree.h"      
int main()      
{      
    ElemType in[]="DGBAECF",post[]="GDBEFCA";      
    BTNode *b2;      
    b2=CreateBT2(post,in,7);      
    printf("b2:");      
    DispBTNode(b2);      
    printf("\n");      
    return 0;      
}      

运行结果:


知识点总结:

运用中序和后序也可以实现遍历二叉树的算法




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值