文章目录
Who Sits Where? Infrastructure-Free In-Vehicle Cooperative Positioning via Smartphones
谁安排在哪里?通过智能手机实现无基础设施的车内协同定位 2014
提示:以下是本篇文章正文内容,下面案例可供参考
一、Abstract
Seat-level positioning of a smartphone in a vehicle can provide a fine-grained
context for many interesting in-vehicle applications, including driver distraction prevention,driving behavior estimation, in-vehicle services customization, etc. However, most of theexisting work on in-vehicle positioning relies on special infrastructures, such as the stereo,cigarette lighter adapter or OBD (on-board diagnostic) adapter. In this work, we proposeiLoc, an infrastructure-free, in-vehicle, cooperative positioning system via smartphones.iLoc does not require any extra devices and uses only embedded sensors in smartphonesto determine the phones’ seat-level locations in a car. In iLoc, in-vehicle smartphonesautomatically collect data during certain kinds of events and cooperatively determine therelative left/right and front/back locations. In addition, iLoc is tolerant to noisy data andpossible sensor errors. We evaluate the performance of iLoc using experiments conductedin real driving scenarios. Results show that the positioning accuracy can reach 90% in themajority of cases and around 70% even in the worst-cases.
智能手机在车辆中的座位级定位可以为许多有趣的车内应用提供细粒度的上下文,包括防止驾驶员分心、驾驶行为估计、车内服务定制等。然而,大多数现有的车载定位工作依赖于特殊的基础设施,例如立体声、点烟器适配器或OBD(车载诊断)适配器。在这项工作中,我们提出了iLoc,一个通过智能手机的无基础设施的车载合作定位系统。iLoc不需要任何额外的设备,只使用智能手机中的嵌入式传感器来确定手机在汽车中的座位位置。在iLoc中,车载智能手机会在某些事件中自动收集数据,并协同确定相对的左/右和前/后位置。此外,iLoc可以容忍噪声数据和可能的传感器错误。我们使用在真实驾驶场景中进行的实验来评估iLoc的性能。结果表明,定位精度在大多数情况下可以达到90%,在最坏的情况下可以达到70%左右。
(智能手机与车辆定位配合,手机协同定位车内位置,确定手机在车内的位置来提供针对性服务)
key :n-vehicle positioning; smartphone sensing; opportunistic sensing;
signal processing
二、 Introduction
1.基于智能手机的车载应用大幅增加。
在这些应用中,智能手机的车内座椅位置通常是一个重要的背景。例如,防止司机分心应用程序可以自动将来电路由到语音邮件或防止开车时发短信。它只需要运行在司机的手机上,而不是乘客的手机上
像“谁坐在哪里”这样的信息对于将乘客智能手机中先前播放的媒体传递给合适的头枕监视器也是必要的
2.在这篇文章中,我们提出了一个新的解决方案,名为iLoc,仅使用嵌入式传感器来确定智能手机的座位水平(前/后,左/右)位置。iLoc的关键思想是分析当一些特定的事件发生时,手机在不同位置的加速度的差异。具体来说:(1)当车辆转弯时,利用在不同智能手机上测量的向心加速度的差异来确定哪一个在另一个的左/右;以及(2)当汽车通过不平坦的路面时,利用在智能手机上测量的垂直加速度的差异来确定前/后位置。与现有工作相比,iLoc具有以下优势:
Infrastructure-free: iLoc does not rely on any dedicated devices in vehicles.
• Robustness: iLoc can correctly identify the positions regardless of the placement and orientation
of the phones in a noisy environment.
• Energy efficiency: iLoc samples data only when particular events occur and avoids the usage of
high power consumption smartphone sensors, like GPS and camera.
``无基础设施:iLoc不依赖车辆中的任何专用设备。鲁棒性:无论手机在嘈杂环境中的位置和方向如何,iLoc都能正确识别位置。能效:iLoc仅在特定事件发生时采集数据,避免使用高功耗智能手机传感器,如全球定位系统和摄像头。`
三 Related Work
Seat-Level In-V ehicle Positioning
座椅水平垂直车辆定位
Situational Aware Study
情境感知研究
System Overview
iLoc includes several key components, including reference frame transformation, event detection andleft/right, front/back identification. Figure 1 depicts the flow chart of iLoc. First, after the system isinitialized, all smartphones start to continuously collect stream data from their onboard accelerometersand gyroscopes. Then, the collected data are transformed from the phone frame to the vehicle framebased on the transformation matrix calculated from the phone’s orientation. The event detection modulethen keeps detecting whether some predefined events have occurred. Once an event is detected, thecorresponding algorithm is invoked to detect the phones location. During this process, if the phones’position or orientation is changed by the users, iLoc will re-calculate the transformation matrix andrepeat the above positioning procedure. iLoc terminates after identifying all phones’ seat-level positions.
系统概述iLoc包括几个关键组件,包括参考框架转换、事件检测和左/右、前/后识别。图1描述了iLoc的流程图。首先,系统初始化后,所有智能手机都开始从板载加速度计和陀螺仪连续收集流数据。然后,基于从电话方位计算的变换矩阵,将收集的数据从电话框架变换到车辆框架。事件检测模块然后继续检测是否已经发生了一些预定义的事件。一旦检测到事件,就会调用相应的算法来检测电话的位置。在此过程中,如果用户改变了手机的位置或方向,iLoc将重新计算转换矩阵,并重复上述定位过程。iLoc在识别所有电话的座位水平位置后终止。
4. Reference Frame Transformation参考系转换
5. Event Detection 时间检测
6. Left/Right Identification 左右标识
7. 7. Front/Back Identification 正反标识
四 Conclusions
In this work, we proposed iLoc, a seat-level in-vehicle positioning based on smartphone
accelerometers. In iLoc, in-vehicle smartphones automatically collect data during certain kinds ofcircumstances and through cooperation, to determine the relative left/right and front/back seat locations.We have implemented iLoc on Android smartphones and evaluated it in real driving scenarios. Theevaluation results show that the accuracy of our solution is promising.
在这项工作中,我们提出了iLoc,一种基于智能手机加速度计的座椅级车载定位系统。在iLoc中,车载智能手机会在某些情况下通过合作自动收集数据,以确定相对的左/右和前/后座位置。我们已经在安卓智能手机上实现了iLoc,并在实际驾驶场景中对其进行了评估。评估结果表明,我们的解决方案的准确性是有希望的。