提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
Bi-objective Optimization of Emergency Dispatching and Routing for Multi-mode Network Using Ant Colony Algorithm
基于蚁群算法的多模式网络应急调度与路由双目标优化\
2020 IEEE 5th International Conference on Intelligent Transportation Engineering----best paper
这篇文章是IEEE会议的一篇best paper,笔者最近非常渴望投一篇会议论文,所以在这里研究一下交通管理建模优化类会议论文的套路与逻辑结构,与大家分享!
一、摘要
本文提出了以乘客延误和调度成本(passenger delay and dispatching cost)的双目标最小为目标的优化模型,通过权衡分析得到调度车辆计划和出行链(dispatching vehicle plan and the trip chain)。包括延迟和费用的帕累托解分别对应于出行链上的乘客分配和每种模式下的车辆分配数量。建立了车厢、铁路、高速列车、飞机子网络的超级网络,以控制换乘时间、换乘客运量和多模式出行链。利用在网络路径选择上具有优势的蚁群算法求解双准则路由问题。本研究对算法进行了改进,以在载货能力不确定的情况下搜索最优乘客疏散路径。基于京津冀交通一体化的实证研究表明:(1)增加支出的经济效率在帕累托前沿下降。(2)统一派出预留的应急车辆。(3)铁路主要由中短途旅客占据。
总结: 本文提出了考虑什么因素的什么模型,包括什么内容,利用什么算法改进了什么操作,最终效果还不错。
二、问题描述
当城际铁路线路发生紧急中断时,乘客的时间跨度会逐渐增大。对于需要考虑时间价值和心理状况的游客或城际工作者,决策者应该使用现有的交通方式来消除影响,从而保持公共交通网络的流畅性。根据紧急情况的性质,恢复前的时间是不确定的,中断的铁路数量是不可预测的,发车的频率应该在时间表上,否则,旅客的到达将是另一个影响变量。因此,我们假设应急车辆数量有限,其从调度点到保留点的行驶时间应在出发时间间隔内。由于城际疏散的行程距离比较大,在疏散过程中设定往返行程不现实,也不经济,因此疏散路线采用多模式出行链设计为单程出行。换乘原则建立在单向行驶假设的基础上,即只允许前一个到达的乘客搭乘后一个到达的车辆。疏散车辆采用铁路列车、客车、高铁列车、飞机等。将列车和其他车辆设置为调度单元,根据最优调度方案确定调度单元。同时优化路由分配与容量限制。由于疏散过程中的危害不会直接威胁到乘客的生命,且是会延长乘客的延误时间。因此决策者需要分析疏散效率与经济支出之间的权衡关系。因此,考虑乘客延误和决策者花费的双目标优化是有价值的。决策者可以根据非支配解集和Pareto-front来制定调度计划,而不是分配有限的疏散资金去寻找最优的疏散计划。
总结: 在这里主要是描述整体的问题的大背景,以及这个问题分析以后属于一个什么问题,需要考虑哪些公共的因素,这个问题可以考虑用什么方法来解决,为什么。
三.方法论
1.Topological Network for Multi-mode Transportation 多模式运输的拓扑网络
其中,i为节点位置,m为到达节点的交通方式,n为换乘次数,1表示上车,0表示下车。
i is the node location, m is the mode of transportation to the node, n is the number of transfers, 1 means getting on the bus, 0 means getting off the bus.
总结:感觉这段就是介绍了最基本的图论框架,介绍了图中设计的符号的意义
2.Bi-objective Optimization Model
图片来自文章Bi-objective Optimization of Emergency Dispatching and Routing for Multi-mode Network Using Ant Colony Algorithm
总结: 这部分应该是文章的重点之一,介绍了文章的参数变量,数学模型,介绍了每个约束的含义。
四、 改进的蚁群算法双目标优化
The pseudocode is following: (伪代码)
总结:这部分是对蚁群算法提出了一点点改进,主要就是修改了节点迁移的概率,以及后续的一些改变。然后加上算法的伪代码pseudocode.
五、NUMERICAL EXAMPLE 数值实验
问题描述(具体问题)
G6732高铁线路起自邯郸东站,止于北京西站,途经5个车站。紧急情况发生,乘客被困在邯郸。高邑站、石家庄站、保定站、北京站是终点站,衡水站、正定站是中转站。图1为邯郸至北京的物理多模网络。每个站点的出行需求设定为200。表二为网络基本信息。初始转移步行时间设置为10,下机和下机时间设置为25。
介绍实验的参数设定
用图描述问题
结果Results
介绍结果,根据算法设计给出了策略
六、结论conclusion
本研究提出了一个应急调度与路由的双目标优化模型。其目标是:(i)多模式协同运输的乘客延误最小;(ii)调度车辆成本最小;(ii)多模式车辆组合。基于蚁群算法的启发式算法证明了多目标优化的可行性和时效性。采用非支配最优解拟合帕累托前沿,决策者可选择每个解对应的调度和路由方案。以京冀综合交通为例,验证了模型和算法的有效性。研究结果表明:(1)增加支出的经济效率在帕累托前沿下降。(二)预留车辆统一调度,并不是所有车辆都被占用(飞机除外)。(iii)铁路主要由中短途旅客占据。长途旅客主要通过高铁和飞机运输。
总结:这部分就是把摘要那部分修改一下,然后稍微修饰夸张一下
其他
包括REFERENCES 和 INTRODUCTION
参考文献10-15篇即可
introduction这部分
介绍前人的研究+痛点或者缺点+你要改进的部分+paper arranged
The paper is arranged as follows: Section 2 described the emergency condition specifically and made assumptions for the approach. Section 3 discussed the topological approach for multi-mode transportation network and the bi-objective optimization model. Section 4 explain the ACO algorithm and provide a pseudocode. Section 5 applied a numerical example to test the algorithm and illustrate the sensitivity of algorithm parameters. Section 6 draws a conclusion.