Dijkstra求最短路 II 点密边密 单调队列优化版

题目:

题解:

用单调队列优化掉朴素dijkstra算法的查找最接近最短路节点的未标记节点。

代码:

#include<bits/stdc++.h>
using namespace std;
using PII=pair<int,int>;

const int N=1000010;

int h[N],e[N],ne[N],w[N],idx;
bool st[N];
int dist[N];
int n,m;

void add(int a,int b,int c){
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++; 
}



int dijkstra(){
    priority_queue<PII,vector<PII>,greater<PII> >heap;
    dist[1]=0;
    heap.push({0,1});
    while(heap.size()){
        auto t=heap.top();
        heap.pop();
        if(st[t.second])continue;
        st[t.second]=true;
        for(int i=h[t.second];i!=-1;i=ne[i]){
            int j=e[i];
            if(dist[t.second]+w[i]<dist[j]){
                dist[j]=dist[t.second]+w[i];
                heap.push({dist[j],j});
            }
        }
        
    }
    if(dist[n]==0x3f3f3f3f)return -1;
    return dist[n];
    
}


int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    memset(dist,0x3f,sizeof dist);
    for(int i=0;i<m;i++){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    printf("%d",dijkstra());
    return 0;
}

题后反思:

dijkstra算法一定不能存在负权边

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dijkstra算法单源最短路径的经典算法,其基本思想是通过逐步扩展生成最短路径集合,最终得到源点到所有其它点的最短路径。 以下是C++实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; // 定义正无穷 struct Edge { int to, w; Edge(int to, int w) : to(to), w(w) {} }; vector<Edge> G[100010]; // 邻接表存图 int dist[100010]; // 存储最短路径长度 bool vis[100010]; // 标记是否已经确定最短路径 void dijkstra(int s) { memset(dist, INF, sizeof(dist)); // 初始化距离为正无穷 memset(vis, false, sizeof(vis)); // 初始化标记为未确定最短路径 dist[s] = 0; // 源点到自己的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; // 小根堆 q.push(make_pair(0, s)); // 将源点入队 while(!q.empty()) { int u = q.top().second; // 取出当前距离最小的点 q.pop(); if(vis[u]) continue; // 如果已经确定最短路径,直接跳过 vis[u] = true; // 标记为已确定最短路径 for(auto e : G[u]) { // 遍历所有相邻的点 int v = e.to; int w = e.w; if(dist[v] > dist[u] + w) { // 如果当前路径更优 dist[v] = dist[u] + w; // 更新最短路径距离 q.push(make_pair(dist[v], v)); // 将该点加入小根堆 } } } } int main() { int n, m, s; cin >> n >> m >> s; for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); for(int i = 1; i <= n; i++) { if(dist[i] == INF) cout << "INF" << endl; // 如果不连通,输出INF else cout << dist[i] << endl; } return 0; } ``` 输入格式:第一行输入三个整数n,m,s,表示图的点数、边数和源点编号。接下来m行每行三个整数u,v,w,表示一条从u到v的有向边,边权为w。 输出格式:输出n行,每行一个整数,表示源点到每个点的最短路径长度。若不连通,则输出INF。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值