编码理论中所需代数知识总结
一、群
1、一个定义了二元运算*的集合G如果满足如下条件,则称之为群。
- 二元运算*满足结合律
- 存在单位元e,使得a*e=e*a=a
- 对于G中任意元素a,存在逆元a‘,使得a*a'=a'*a=e
- 如果二元运算*满足交换律,则上述群是交换群(abel群),如不满足二三条,称为半群,如还满足交换律,称为交换半群
2、群的单位元和逆元都是唯一的。
3、集合G中的元素不一定是数,还可以是多项式、矩阵、线性变换等等。
4、G为二元运算*下的一个群,H为G的一个非空子集,下列条件满足时,H称为G的一个子群:
- H在二元运算*下是封闭的
- H中的任意元素的逆元任然在H中
5、H为二元运算*的群G的子群,a属于G,则a*H称为H的陪集,元素为H