Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用”H” 表示),也可能是平原(用”P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者’H’),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output
6
Solution
感觉和上一题有点像
三维的状压DP,用了滚动数组
f[i][j][k] i表示所在行 j表示当前行状态 k表示前一行状态
预处理出一行中不会造成互相攻击的状态和每个状态所含的1(炮兵部队)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#define Max(a,b) (a>b?a:b)
using namespace std;
int n,m,f[2][1050][1050],map[100],state[1050],num[1050],cnt;
int count(int x)
{
int y=0;
while(x)
{
if(x&1)y++;
x>>=1;
}
return y;
}
void init()
{
memset(map,0,sizeof(map));
memset(f,0,sizeof(f));
cnt=0;
for(int i=0;i<=(1<<m);i++)
{
bool b=0;
if(i&(i<<1))b=1;
if(i&(i<<2))b=1;
if(!b)
{
state[++cnt]=i;
num[cnt]=count(i);
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=1;i<=n;i++)
{
char c[15];
cin>>c;
for(int j=0;j<m;j++)
{
map[i]<<=1;
if(c[j]=='P')map[i]+=1;
}
}
int ans=0,cur=0;
for(int i=1;i<=n;i++)
{
cur^=1;
for(int j=1;j<=cnt;j++)
{
if((state[j]&map[i])!=state[j])continue;
if(i==1)
{
f[cur][j][1]=num[j];
ans=Max(ans,f[cur][j][1]);
}
else
for(int k=1;k<=cnt;k++)
{
if(state[k]&state[j])continue;
if(i==2)
{
f[cur][j][k]=Max(f[cur][j][k],f[cur^1][k][1]+num[j]);
ans=Max(ans,f[cur][j][k]);
}
else
for(int l=1;l<=cnt;l++)
{
if(state[l]&state[k])continue;
if(state[l]&state[j])continue;
f[cur][j][k]=Max(f[cur^1][k][l]+num[j],f[cur][j][k]);
ans=Max(ans,f[cur][j][k]);
}
}
}
}
printf("%d\n",ans);
}
return 0;
}