主流流处理框架之间的区别

主流流处理框架的区别

流计算:将大规模流动数据在不断变化的运动过程中实现数据的实时分析,捕捉到可能有用的信息,并把结果发送到下一计算节点。
主流流计算框架:Kafka StreamingApache StormSpark StreamingFlink DataStream

  • Kafka Streaming:是一套基于Kafka-Streaming库的一套流计算工具jar包,具有简单容易集成等特点。
  • Apache Storm/Jstorm:流处理框架实现对流数据的处理和状态管理等操作。
  • Spark Streaming:构建在Spark批处理之上的流处理框架,微观批处理,因此诟病 延迟较高。
  • Flink DataStream/Blink:属于第三代流计算框架,吸取了Spark和Storm设计经验,在实时性和应用性上以及性能都有很大的提升,是目前为止最强的流计算引擎。

在适用性上来说:

  • Kafka的优势在于:Kafka Stream以它的轻量级容易部署低延迟等特点在微服务领域相比较 专业的 Storm、spark streaming和Flink 而言有着不可替代的优势
  • Storm是一个实时的流处理引擎,能实现对记录的亚秒级的延迟处理
  • Spark Streaming是核心Spark API的扩展,可实现实时数据流的可扩展,高吞吐量,容错流处理
  • FlinkDataStream 对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值