初衷:
由于系统、平台的原因,网上有各种版本的tensorflow安装教程,基于linux的、mac的、windows的,各有不同,tensorflow的官网也给出了具体的安装命令。但实际上,即使tensorflow安装成功,还是会遇到需要安装其他辅助工具的情况,同时,换一台机器又要面临整个环境重新安装的问题。由于docker制作一次镜像,可以拷贝重复使用的原因,在这里探讨一下在docker上制作一套完整tensorflow实验环境的流程。
搭建过程:
(1) docker安装:
既然是基于docker,首先需要使用者的机器上已经成功安装好docker环境,并能正常使用,docker的安装在此不述。
(2) 配置SSH远程登录docker:
docker的命令行界面不能复制粘贴,为了方便安装,建议使用xshell或者secureCRT连接docker:
IP地址为启动docker界面的IP,端口为22,用户名为“docker”,密码为“tcuser”
(3)镜像加速配置:
由于需要安装众多的软件,而国外资源经常被墙,配置一个国内镜像环境进行加速是个不错的选择,
daocloud.io(https://www.daocloud.io/mirror#accelerator-doc)给出了配置加速器的具体过程
(4)安装DaoCloud Toolbox
安装DaoCloud Toolbox是为了能使用 dao 命令
在https://dashboard.daocloud.io/选择“我的集群”
然后选择“添加主机”
选择“我已有一台主机|windwos(根据你的环境选择)
选择“安装好了”,进入第2步“安装主机监控程序”
Docker机器启动了的话直接在输入命令2,即可安装监控程序,这样在https://dashboard.daocloud.io/即可看到自己的docker环境的运行情况了。
以上准备工作OK后,进入tensorflow实验环境的搭建及镜像制作:
(5)安装ubuntu
首先是ubuntu环境和python环境安装,跟着命令走就行了:
docker pull daocloud.io/library/ubuntu
docker run -it ubuntu:14.04
apt-get update
sudo apt-get install python
apt-get install wget
cd tmp
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
apt-get install make
apt-get install build-depgcc ===等待安装,这个安装失败不影响
apt-get install build-essential
apt-get install libxml2-dev libxslt1-dev
apt-get install libgsl0-dev
apt-get install python-dev
apt-get install libffi-dev
apt-get install libssl-dev
(6)安装tensorflow:
安装tensorflow 参考官网ubuntu环境下的tensorflow安装,安装命令为:
sudo apt-get install python-pip python-dev
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl
sudo pip install --upgrade $TF_BINARY_URL
值得注意的是,安装过程中numpy会下载失败,选择从国内镜像下载安装,同时需要选择与tensorflow匹配的numpy版本,我是从中科大的镜像库下载安装的:
pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ numpy
numpy安装成功后,再次输入:
sudo pip install --upgrade $TF_BINARY_URL
将继续tensorflow的安装
安装一些工具来上传下载文件、编辑文件
sudo apt-get install lrzsz
sudo apt-get install vim-gtk
至此,环境基本配置完成了。
(7)保存镜像过程:
退出之前请记住当前用户的镜像image_ID:
退出并保存镜像:
exit
docker ps -a -q
docker commit 5efae527503c ubuntu/tensorflow
查看我们的镜像:
docker images
运行刚刚制作的镜像:
docker run -it ubuntu/tensorflow
测试安装是否成功:
下次使用时直接进入该镜像环境即可使用了