题目来源
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙 A 和青蛙 B,并且规定纬度线上东经 0 度处为原点,由东往西为正方向,单位长度 1 米,这样我们就得到了一条首尾相接的数轴。设青蛙 A 的出发点坐标是 x,青蛙 B 的出发点坐标是 y。青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花费的时间相同。纬度线总长 L 米。现在要你求出它们跳了几次以后才会碰面。
输入格式
输入只包括一行五个整数 x,y,m,n,L。
输出格式
输出碰面所需要的次数,如果永远不可能碰面则输出一行一个字符串 Impossible
。
输入输出样例
输入 #1
1 2 3 4 5
输出 #1
4
说明/提示
对于 100% 的数据,1≤x=y≤2×109,1≤m,n≤2×109,1≤L≤2.1×109。
算法分析
假设跳了t次,则可以列出方程x+mt≡y+nt(mod L),
将同余方程x+mt≡y+nt(mod L)转换为不定方程x+mt+sL=y+nt,
移项后可得(m-n)t+sL=y-x,
依据裴蜀定理易知,其最小非负解为Xmin=(x' mod T+T) mod T
Code
#include <bits/stdc++.h>
using namespace std;
long long k(long long a, long long b, long long &x, long long &y) {
if (!b) {
x=1,y=0;
return a;
}
long long d=k(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main() {
long long x,y,m,n,l,s,t;
cin>>x>>y>>m>>n>>l;
long long d=k(m-n,l,s,t);
if((y-x)%d!=0){
cout<<"Impossible";
return 0;
}
cout<<((s*(y-x)/d)%abs(l/d)+abs(l/d))%abs(l/d);
return 0;
}