自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 计算n阶乘中尾部零的个数

写在前面本来觉得问题挺容易的,不打算记录,谁知道一不小心,还真没做出来。最终凭借“朴实”的算法思想解决了问题,但是其中的曲折还真是汗颜。科学的思维指导确实必不可少,“野路子”的朴素的战斗理论不论是效率还是后续的算法演进都经不起考验。这里只是记录一下自己最近两天对此问题的一些想法,目前只能说是解决了...

2018-07-12 10:06:34

阅读数 51

评论数 0

原创 tensorboard 显示问题

D:\pythonSrc\TensorFlow\yanzhengma_shibie\tensorboard>tensorboard --logdir=D:\pythonSrc\TensorFlow\yanzhengma_shibie\tensorboard\log 路径cd到log的上一层...

2017-08-15 15:46:08

阅读数 164

评论数 0

原创 对GBDT的理解

!!必须要澄清的误区:提起决策树(DT, Decision Tree) 绝大部分人首先想到的就是C4.5分类决策树。但如果一开始就把GBDT中的树想成分类树,那就是一条歪路走到黑,一路各种坑,最终摔得都要咯血了还是一头雾水说的就是LZ自己啊有木有。咳嗯,所以说千万不要以为GBDT是很多棵分类树。决...

2017-04-10 22:47:27

阅读数 3289

评论数 1

转载 windows(64位)下xgboost的安装

前言:这阵子突然对xgboost产生了极大的兴趣,参加过一些大数据比赛但也是停留在入门者瞎玩玩的级别,为了锻炼下自己也为了增加日后面试的谈资吧,来入门下当前很火的xgboost。网上有不少关于xgboost安装的教程和博客,可是因为一些用到的插件或者xgboost的版本不同等原因,初学者在安装的时...

2017-04-07 20:44:49

阅读数 283

评论数 2

转载 windows(64位)下xgboost的安装

前言:这阵子突然对xgboost产生了极大的兴趣,参加过一些大数据比赛但也是停留在入门者瞎玩玩的级别,为了锻炼下自己也为了增加日后面试的谈资吧,来入门下当前很火的xgboost。网上有不少关于xgboost安装的教程和博客,可是因为一些用到的插件或者xgboost的版本不同等原因,初学者在安装的时...

2017-04-07 20:32:47

阅读数 296

评论数 0

原创 你应该掌握的七种回归技术

【编者按】回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素。 什么是回归分析? 回归分...

2017-03-24 21:28:37

阅读数 171

评论数 0

转载 隐马尔可夫(HMM)、前/后向算法、Viterbi算法 再次总结

隐马尔可夫(HMM)、前/后向算法、Viterbi算法 再次总结 2016-09-02      0 个评论    来源:xueyingxue001的专栏   收藏    我要投稿 说明:此篇是作者对“隐马尔可夫模型”的第二次总结,因此可以算作对上次总...

2017-03-19 22:12:55

阅读数 178

评论数 0

转载 Adaboost 算法的原理与推导

Adaboost 算法的原理与推导 0 引言     一直想写Adaboost来着,但迟迟未能动笔。其算法思想虽然简单:听取多人意见,最后综合决策,但一般书上对其算法的流程描述实在是过于晦涩。昨日11月1日下午,邹博在我组织的机器学习班第8次课上讲决策树与A...

2017-03-15 17:01:20

阅读数 151

评论数 0

转载 数据挖掘中所需的概率论与数理统计知识

数据挖掘中所需的概率论与数理统计知识   (关键词:微积分、概率分布、期望、方差、协方差、数理统计简史、大数定律、中心极限定理、正态分布) 导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态...

2017-03-15 13:19:00

阅读数 1875

评论数 0

转载 最大熵模型中的数学推导

最大熵模型中的数学推导 http://blog.csdn.net/v_july_v/article/details/40508465?utm_source=tuicool&utm_medium=referral 0 引言     写完SVM之后,一直想...

2017-03-15 13:03:06

阅读数 186

评论数 0

转载 贝叶斯理论

1.贝叶斯法则 机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。 最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。 2...

2017-03-10 19:47:18

阅读数 312

评论数 0

转载 神经网络

先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东...

2017-03-09 14:50:56

阅读数 237

评论数 0

原创 凸集分离定理的意义

他在与为分类提供了理论上的开端。在机器学习的分类问题中,我们可以把带有类别标签的训练集看做不同的凸集,而分割他们的超平面就是各种分类器。我们的目标是根据这些训练数据集的特性,找到一个分类算法,通过学习(或者训练)计算出分割这些凸集的超平面。。这样就达到了分类的目标。。。 这就是各种分类算法,共同...

2017-03-08 16:33:22

阅读数 1798

评论数 0

转载 各种python库

Python 在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Array; 比较成熟的(广播)函数库; 用于整合C/C++和Fortran代码的工具包; 实用的线性代数、傅里叶变换和随机数生成函...

2017-03-07 10:29:42

阅读数 154

评论数 0

原创 研究生生活一

研究生开学已经两个月了,这两个月熟悉了校园生活,了解了上课套路,见识了导师功力。这两个月过得很快,就如同本科一样,转眼即逝的感觉,所以我一刻不敢浪费,现在算一下,研究生生活已经过去十二分之一了。过不了多久,就会变成六分之一,三分之一,二分之一,到最后的倒计时。 现在忽然想写写这两个月的生...

2017-03-07 10:27:40

阅读数 942

评论数 0

转载 100 numpy exercises

100 numpy exercises This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy docum...

2017-03-07 10:26:43

阅读数 1000

评论数 0

原创 最近遇到的各种“差”

在学习线性回归模型中,遇到了各种“差”,现在总结一下。 方差 : 标准方差=标准差:偏差: 绝对偏差:相对偏差:平均偏差:相对平均偏差:协方差: 误差:均方误差:标准误差:这是说明一下: 偏差与方差的关系:偏差描述的是预测输出和真实值的差距,重点是整体性,偏差越大,说明预...

2017-03-07 10:25:56

阅读数 148

评论数 0

原创 VMware NAT 网络连接 将能连同主机,以及能够上外网

NAT连接方式,实现主机与虚拟机之间,虚拟机与虚拟机之间互通,并且不管是虚拟机还是主机都可以访问外网; 设置方法: 1、这两个全部采用自动获取Ip的方试 2、 这个很关键,这是你的虚拟机IP的序列,从开始到结尾,你只能在这里面选。 3、 选择手动配置IP 这...

2017-03-07 10:25:13

阅读数 551

评论数 0

转载 Python正则表达式指南

1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的...

2017-03-07 10:23:57

阅读数 93

评论数 0

原创 贝叶斯分类器

贝叶斯决策论 核心:实质是将期望风险降到最低。这等价于将后验概率最大化。 为什么?? 解释: 有标记Y={C1,C2.....Cn},样本x可能被错误标记为Ci。则根据后验概率可得到P(Ci|x) (公式的意思是:样本x被标记为Ci的概率。)则总的条件风险为 R(Ci|x)= (...

2017-03-07 10:22:02

阅读数 133

评论数 0

原创 K-近邻算法

分类中:采用“投票法”,k个样本中出现最多的累呗标记作为预测结果; 回归中:采用“平均值”,即将K个样本的 ’实值输出标记的平均值作为预测结果。 k近邻算法是一种“懒惰学习” 关键是k值得选取,是一个非常重要的参数。选取的小容易造成过拟合,选取的大容易造成欠拟合。 k近邻需...

2017-03-07 10:21:19

阅读数 134

评论数 0

原创 决策树算法

他首先是一颗树,关键在决策上,怎样找最佳的特征(属性)是决策树算法的关键。 典型的有信息增益(ID3)、信息增益比(C4.5)和基尼指数。 决策树的剪枝,为避免过拟合和欠拟合,有两种剪枝方法:有预剪枝和后剪枝。 决策树存在的问题:一、既然是靠特征(属性)来进行逐步分类,那要是遇见某一对象的某...

2017-03-07 10:20:24

阅读数 115

评论数 0

原创 K-means算法

这是遇见的第一个“非监督”的学习算法。 k_mreans算法是典型的基于距离的聚类算法,采用距离作为相似的评价指类,即认为两个对象的距离越近,其相似度就越大。所以认为簇是由距离的对象组成的。因此把得到紧凑且独立的簇作为最终目标。 对K-means 算法的改进:二分K_means算法。。...

2017-03-07 10:19:01

阅读数 96

评论数 0

转载 各种python库

Python 在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Array; 比较成熟的(广播)函数库; 用于整合C/C++和Fortran代码的工具包; 实用的线性代数、傅里叶变换和随机数生成函...

2016-10-15 12:01:00

阅读数 208

评论数 0

转载 su与su-切换用户

linux为安全计,把普通用户设置为默认的账户;这一点跟windows不一样,windows的默认用户是管理员。由于linux的默认账户是普通用户,而更改系统文件或者执行某些命令,必需要root(即linux中的管理员)身份才能进行,这就需要从当前用户切换到root用户。   linux中切...

2016-09-17 13:40:18

阅读数 242

评论数 0

转载 生产场景不同角色linux服务器分区案例分享

鉴于大家对 http://oldboy.blog.51cto.com/2561410/629558 一文反应强烈,老男孩在发一篇《生产场景各linux不同角色服务器分区案例分享》希望能给大家一个摸不着,但看的见的老鸟对于生产场景分区的建议。 服务器角色 分区建议 ...

2016-09-17 12:29:36

阅读数 111

评论数 0

原创 linux networkd的奇怪问题

vm 采用 VMware Workstation 12  专业版  cenOS采用 CentOS6.5  采用dhcp 的方式连接network 会经常出现 ping DNS 和ping baidu.com ping不通的情况, 关上centOs 和虚拟机 和电脑。再开机就好了,不...

2016-09-11 10:25:31

阅读数 114

评论数 0

原创 用secureCRT 连接虚拟机中的linux

注意主机名是linux用ifconfig命令获取的eth0的ip地址。而且还要关闭linux防火墙。

2016-09-10 19:35:11

阅读数 142

评论数 0

原创 linux连接network

可以使用手动设置IP的方式,也就是静态Ip的方式连接网络,但是这种方式非常不容易配置,很容易出错,而且不容易成功。除非是分配好的ip。不建议这种方式。 另一种是使用动态获取IP的方式,也就是DHCP的方式,此方式不用动手配置IP,条件是:主机能上网,虚拟机利用桥接的方式。linux中的 eth0...

2016-09-10 19:02:32

阅读数 131

评论数 0

原创 掷骰子游戏

package demo; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Random; publ...

2014-12-24 00:24:45

阅读数 302

评论数 0

原创 新手的小心得

刚开始做项目,千万不要快,要仔细,慢慢的做,如果一味的求速度,会出现一些,无法预知的低级错误,这些错误还不好找到,反而耽误了时间。所以 仔细 速度放慢,做的过程中 体会其中的原理,我感觉这样才会循循渐进。光想求速度了,到最后会让一些低级错误弄得自己心情非常不爽。

2013-06-18 13:11:07

阅读数 327

评论数 0

原创 ssh 报错 Target can not null

ssh 报错 Target can not null ssh   处理建议   前台页面的js里的函数有些字段对应不上,注意查找

2013-06-04 20:53:48

阅读数 292

评论数 0

原创 ssh 添加页面 出现的问题 及解决 办法

问题 如照片所示   解决办法 ①  @Resource  private IStorageInfoService storageInfoService; 对应的service层的借口 而不是 实现的接口的类 ② 如果各种都对应好了,Tomcat换了好几次也不行,重新部署也不行,还...

2013-05-29 20:36:57

阅读数 307

评论数 0

原创 如何用easy-ui显示两张表的数据而且实现两张表的增,删,改。

在script中定义两个datagrid,如下var datagrid;var datagrid1;两个datagrid 用来显示两张表的数据! var datagrid; var datagrid1; $(function() {   datagrid = $('#C...

2013-05-28 19:39:55

阅读数 1000

评论数 1

原创 现在的问题

学习J2ee应经快一月了,完全的零基础,完全的自学,没有教材,没有老师,没有视频,就只有一位大四的学长带我们。他给我们上了几次课,大体的讲了开发的流程,接着就让我们开始做项目(练手用的),项目并不大,可我们几个人整天的懵,项目毫无进展,只要遇到一点小麻烦,就得请教学长(我们压根不知怎样解决),虽然...

2013-03-28 18:34:43

阅读数 441

评论数 0

转载 HTML嵌套规则

最近在重新学习HTML的知识,算是对HTML的一个重新认识吧!别小看了这东西,一切的网页可都是以它为基础的!下面就详细归纳一下HTML标签的嵌套规则吧,希望对大家有所帮助。 XHTML的标签有许多:div、ul、li、dl、dt、dd、h1~h6、p、a、addressa、span、 str...

2013-03-14 13:13:04

阅读数 372

评论数 0

原创 新手的开始

这是接触到第一个不算项目的项目,很想把它做好,做好,在做好。可是自己的能力,技术的有限。总不能按时完成任务。心里纠结,压力挺大,每天还得上课。总想着自己的技术什么时候才能像学长一样牛逼,我相信自己有一天肯定能向他这样,什么都会。可那得到什么时候啊,总是有些着急。        这也是开通博客的第...

2013-03-10 15:57:26

阅读数 263

评论数 0

提示
确定要删除当前文章?
取消 删除