这是遇见的第一个“非监督”的学习算法。
k_mreans算法是典型的基于距离的聚类算法,采用距离作为相似的评价指类,即认为两个对象的距离越近,其相似度就越大。所以认为簇是由距离的对象组成的。因此把得到紧凑且独立的簇作为最终目标。
对K-means 算法的改进:二分K_means算法。。。。
本文介绍了基于距离的聚类算法K-means及其改进版本二分K-means。K-means算法通过计算对象间的距离来衡量相似度,并将距离相近的对象归为同一簇,旨在形成紧凑且独立的簇。
k_mreans算法是典型的基于距离的聚类算法,采用距离作为相似的评价指类,即认为两个对象的距离越近,其相似度就越大。所以认为簇是由距离的对象组成的。因此把得到紧凑且独立的簇作为最终目标。
对K-means 算法的改进:二分K_means算法。。。。
175

被折叠的 条评论
为什么被折叠?