K-means算法

本文介绍了基于距离的聚类算法K-means及其改进版本二分K-means。K-means算法通过计算对象间的距离来衡量相似度,并将距离相近的对象归为同一簇,旨在形成紧凑且独立的簇。
这是遇见的第一个“非监督”的学习算法。

k_mreans算法是典型的基于距离的聚类算法,采用距离作为相似的评价指类,即认为两个对象的距离越近,其相似度就越大。所以认为簇是由距离的对象组成的。因此把得到紧凑且独立的簇作为最终目标。

对K-means 算法的改进:二分K_means算法。。。。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值