贝叶斯分类器

贝叶斯决策论与分类器
贝叶斯决策论

核心:实质是将期望风险降到最低。这等价于将后验概率最大化。 为什么??

解释:

有标记Y={C1,C2.....Cn},样本x可能被错误标记为Ci。则根据后验概率可得到P(Ci|x) (公式的意思是:样本x被标记为Ci的概率。)则总的条件风险为 R(Ci|x)=\sum_{j=1}^{n}{\lambda ij*P(Cj|x)}  (\lambda 是标记错误的损失函数)。所以得到优化任务:最小化条件风险R(Ci|x)。。。

这里\lambda =

推荐:

R(Ci|x)=\sum_{j=1}^{n}{\lambda ij*P(Cj|x)}

=arg min \sum_{j=1}^{n}{\lambda ij*P(Cj|x)}

=arg min \sum_{j=1}^{n}{\lambda ij*P(Ci !=j | x)}

=arg min (1-P(Ci=j | x))

=arg max P(Ci=j | x))

这里就转化过来了,这就是贝叶斯决策论。。

贝叶斯分类器

求得arg max P(Ci=j | x)),下面怎么求这个呢??

利用贝叶斯公式得到

因为样本x 是固定的,所以只需求P(x|C)P(C)即可

利用极大似然发求max P(x|C)P(C)

极大似然法:

把发生概率最高的参数作为真实参数估计。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值