一、有理数与无理数
1、是否有无理数的无理数次方=有理数
解
:无理数成立
:有理数成立
2、有理数(
(a是有理数))
定义
整数和分数的统称,即整数和分数的集合。
3、证明
(a是质数)
那么
, a不是质数
整数的封闭性
4、加乘法运算
加:x+y是x的第y个后记
乘:
5、减法
x-y=d
x=d+y
此时减法就成了加法(加:x+y是x的第y个后记)
6、平方根(历史)
从前.....
7、任意两个有理数间都可以塞进去任意一个有理数
例:设有有理数a,b;
则
c是有理数

8、除法
%
(整除)
逆元

二、费马小定理
1、题目:

1、(1)解析:

若要算a的(p-2)次方请用用户(大佬)L-M-Y的快速幂
三、欧拉定理(特殊费马小定理)
1、定义
要求a与p互质
2、欧拉函数(欧拉定理专用)
小于n且与n互质的数的数量
符号:”φ“(fai四声)
φ(6)=2
φ(13)=12
式子:
φ(n)
n-1-不互质
2、(1)解:φ(n)
积性
如果且x,y互质
(x,y)>1
........
........
对于