树状数组模板+前缀和+线段树

树状数组的数据结构,它能在O(logn)内对数组的值进行修改查询某一段数值的和。

区间更新,单点求和的做题心路:

首先是HDU 1556

算是做树状数组的第一个模板例题,然后看着板子,竟然写错了,还是没有理解板子的意思

HDU - 1556

这里我写成这样的了,可是这样的话,时间复杂度比直接for循环还要大,看了别人的代码后发现,我理解错了,输入y以后,直接就对前面出现的数据进行更新了!

然后就改改改,仿照模板继续写!

这个是单点操作的板子:


int lowbit(int x)
{
    return x&(-x);
}
void update(int x,int num)
{
    while(x<=N)
     {
         d[x]+=num;
         x+=lowbit(x);
     }
}
int getSum(int x)
{
    int s=0;
    while(x>0)
     {
         s+=d[x];
         x-=lowbit(x);
     }
    return s;
}

一开始看得板子只有但个点的插入,然后就是某一个区间的求和操作,如果这样做的话,就要for循环了,后来发现这道题能够直接对区间进行操作,只需要改变一下就行了。

模板:

#include<algorithm>
#include<cstdio>
#include<iostream>
#include<map>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=100005;
int n;
int in[maxn];//这个代表的是每个的数据
int a,b;
int lowbit(int x)
{
    return x&(-x);
}

void update(int i,int x)
{
    while(i>0)
    {
        in[i]+=x;
        i-=lowbit(i);
    }
}

int sum(int x)
{
    int sum=0;
    while(x<=n)
    {
        sum+=in[x];
        x+=lowbit(x);
    }
    return sum;
}

int main()
{
    while(~scanf("%d",&n)&&n)
    {
        memset(in,0,sizeof(in));
        for(int i=1;i<=n;++i)
        {
            scanf("%d %d",&a,&b);
                update(b,1);
                update(a-1,-1);
        }
        printf("%d",sum(1));
        for(int i=2;i<=n;++i)
            printf(" %d",sum(i));
        printf("\n");
    }
    return 0;
}

没错,我模仿的就是这个CSDN的代码写的!

不过,这道题可以用前缀和来写,并且发现还特别特别的简单!

前面的时候就有接触前缀和,只是对输入数据的第一位和最后一位的后一位进行一个操作,最后每一次的这一位加上前一个的操作就行了!

关键点是,输入的第一个数据进行的操作是这一位++,输入的第二个数据济宁的操作是后面的一位--

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=100005;
int mapp[maxn];
int main()
{
    int n;
    while(~scanf("%d",&n)&&n)
    {
        memset(mapp,0,sizeof(mapp));
        for(int i=1;i<=n;++i)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            mapp[a]++;
            mapp[b+1]--;
        }
        //对数据的开头进行操作
        for(int i=1;i<=n;++i)
        {
            mapp[i]+=mapp[i-1];
            if(i==1)
                printf("%d",mapp[i]);
            else
                printf(" %d",mapp[i]);
            if(i==n)
                printf("\n");
        }
    }
    return 0;
}

解决线段树花费了一段时间

因为一般如果说是对单个点进行操作很简单,现在变成区间的更新,需要引入懒惰标记

PUSHDOWN模板-区间

线段树的模板

可算是过了。。。

感觉现在理解起来,只能说玄而又玄!!!!

首先呢,是数组的开辟,应该开辟的数组大小时数据范围的四倍。

int sum[maxn<<2];
int add[maxn<<2];//懒惰标记

然后呢,是建树,懵逼的是为什么建树的时候进行输入,这道题压根不需要输入的,只需要在建树的时候把数据初始化为0就行了。

void build(int l,int r,int rt)
{
    sum[rt]=0;
    if(l==r) return ;
    int m=(l+r)>>1;
    build(lson);
    build(rson);
}

其中:

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

接着,就是更新数据了。对应的函数是update。

这个update就跟树状数组一样,有两种操作,单点操作和区间操作。

单点操作:

单个点的修改
void update(int L,int C,int l,int r,int rt)
{
    //l,r,rt当前节点的区间,以及当前节点的编号
    //到了叶节点,进行修改
    if(l==r)
    {
        sum[rt]+=C;
        return ;
    }
    int m=(l+r)/2;
    if(L<=m)
        update(L,C,lson);
    else
        update(L,C,rson);
    //子节点更新,父节点更新
    pushup(rt);
}
//区间上的修改

这里出现了一个pushup

void pushup(int x)
{
    sum[x]=sum[x<<1]+sum[x<<1|1];
}

这里改变的的儿子的值。。。

区间操作:

void update(int L,int R,int C,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        //如果说本区间完全在操作区间以内
        sum[rt]+=C*(r-l+1);
        add[rt]+=C;
        return ;
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    if(m>=L) update(L,R,C,lson);
    if(m<R) update(L,R,C,rson);
    pushup(rt);

}

这里出现了一个pushdowm

void pushdown(int rt,int l,int r)
{
    if(add[rt])
    {
        add[rt<<1]+=add[rt];
        add[rt<<1|1]+=add[rt];
        //求出两个节点的值
        sum[rt<<1]+=add[rt]*l;
        sum[rt<<1|1]+=add[rt]*r;
        //标记下传,置0
        add[rt]=0;
    }
}

懒惰标记

现在数据更新完毕,接下来就是输出了。

在以前接触线段树的时候,输出的是某一个区间的和,这个时候只需输入一个区间,就可以得出答案了,那么现在也可以用这个思维,把区间的左右端点都设置为i,这样就是单个点的值了!

int query(int L,int R,int l, int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    int ans=0;
    if(L<=m) ans+=query(L,R,lson);
    if(R>m) ans+=query(L,R,rson);
    return ans;
}

实现代码如下:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
//其中rt代表的是当前的节点的编号
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn=100005;
int sum[maxn<<2];
int add[maxn<<2];//懒惰标记



void build(int l,int r,int rt)
{
    sum[rt]=0;
    if(l==r) return ;
    int m=(l+r)>>1;
    build(lson);
    build(rson);
}


void pushup(int x)
{
    sum[x]=sum[x<<1]+sum[x<<1|1];
}

void pushdown(int rt,int l,int r)
{
    if(add[rt])
    {
        add[rt<<1]+=add[rt];
        add[rt<<1|1]+=add[rt];
        //求出两个节点的值
        sum[rt<<1]+=add[rt]*l;
        sum[rt<<1|1]+=add[rt]*r;
        //标记下传,置0
        add[rt]=0;
    }
}
//void build(int l,int r,int rt)
//{
//    if(l==r)
//    {
//        scanf("%d",&sum[rt]);//储存数组值
//        return ;
//    }
//    int m=(l+r)>>1;
//    //左右递归
//    build(lson);
//    build(rson);
//    pushup(rt);//更新信息
//}


int query(int L,int R,int l, int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    int ans=0;
    if(L<=m) ans+=query(L,R,lson);
    if(R>m) ans+=query(L,R,rson);
    return ans;
}

//单个点的修改
//void update(int L,int C,int l,int r,int rt)
//{
//    //l,r,rt当前节点的区间,以及当前节点的编号
//    //到了叶节点,进行修改
//    if(l==r)
//    {
//        sum[rt]+=C;
//        return ;
//    }
//    int m=(l+r)/2;
//    if(L<=m)
//        update(L,C,lson);
//    else
//        update(L,C,rson);
//    //子节点更新,父节点更新
//    pushup(rt);
//}
区间上的修改


void update(int L,int R,int C,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        //如果说本区间完全在操作区间以内
        sum[rt]+=C*(r-l+1);
        add[rt]+=C;
        return ;
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    if(m>=L) update(L,R,C,lson);
    if(m<R) update(L,R,C,rson);
    pushup(rt);

}

int main()
{
    int n;
    while(~scanf("%d",&n)&&n)   
    {
        memset(sum,0,sizeof(sum));
        memset(add,0,sizeof(add));
        build(1,n,1);
        for(int i=1;i<=n;++i)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            update(a,b,1,1,n,1);
        }
        printf("%d",query(1,1,1,n,1));
        for(int i=2;i<=n;++i)
            printf(" %d",query(i,i,1,n,1));
        printf("\n");
    }
    return 0;
}
​

​

 

从上往下,分别是 线段树,前缀和,树状数组。

别忘了初始化,看我就WA了一发...........

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值