海边躺着一排咸鱼,一些有梦想的咸鱼成功翻身(然而没有什么卵用),一些则是继续当咸鱼。一个善良的渔夫想要帮这些咸鱼翻身,但是渔夫比较懒,所以只会从某只咸鱼开始,往一个方向,一只只咸鱼翻过去,翻转若干只后就转身离去,深藏功与名。更准确地说,渔夫会选择一个区间[L,R],改变区间内所有咸鱼的状态,至少翻转一只咸鱼。
渔夫离开后想知道如果他采取最优策略,最多有多少只咸鱼成功翻身,但是咸鱼大概有十万条,所以这个问题就交给你了!
包含多组测试数据。
每组测试数据的第一行为正整数n,表示咸鱼的数量。
第二行为长n的01串,0表示没有翻身,1表示成功翻身。
n≤100000
在渔夫的操作后,成功翻身咸鱼(即1)的最大数量。
5 1 0 0 1 0 3 0 1 0
4 2
对于第一个样例,翻转区间[2,3],序列变为1 1 1 1 0。
对于第二个样例,翻转整个区间,序列变为1 0 1。
这个题就是选择某一区间进行翻转,求能翻转出来1的最大数量;
这道题可以先把所有的1的个数全都求出来,然后把每个0和1分成一小块区间,并求出区间大小,然后在进行翻转,然后求出有效的翻转个数加在原来的,个数上;
我就想吐槽一下至少翻转一次,至少你妹啊,全都是1,非得翻转出一个0,就这里错了好几次。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
using namespace std;
typedef struct//存区间内元素和区间大小
{
int data;
int sum;
} node;
int a[999999];
node p[999999];
int main()
{
ios::sync_with_stdio(false);
int i, sum, l, x, m, n, s;
while(cin>>n)
{
sum = 0;
l = 0;
x = 0;
s = 0;
for(i = 0; i < n; i++)
{
cin>>a[i];
if(a[i] == 1)//先求一遍1的个数
sum++;
if(i != 0 && a[i] != a[i - 1])//求区间大小
{
p[x].data = a[i - 1];
p[x++].sum = i - 1 - l + 1;
l = i;
}
}
p[x].data = a[i - 1];
p[x++].sum = i - 1 - l + 1;
m = 0;
for(i = 0;i < x;i++)//找到第一个0区间
{
if(p[i].data == 0)
{
break;
}
}
for(;i < x;i++)//求有效翻转个数
{
if(s < 0)
s = p[i].sum;
else
{
if(p[i].data == 0)
s += p[i].sum;
else//1翻转之后是0,原来要统计的1翻转没了,所以要减掉
s -= p[i].sum;
}
m = max(m,s);//记录最大的有效翻转个数
}
sum += m;
if(m == 0)//这是最坑的,就算全都是1也要找个位置翻转一下
sum -= 1;
cout<<sum<<endl;
}
return 0;
}