论文阅读:An Efficient Statistical Method for Image Noise Level Estimation

Introduction

噪声水平估计对于非盲去噪方法是至关重要的,噪声水平估计质量直接影响去噪的质量。这篇文章是2015年ICCV 的一篇文章,针对于加性高斯白噪声,其利用非局部相似块具有低秩性的特性,利用协方差矩阵冗余维度的特征值估计噪声水平,并取得了不错的效果。这篇文章的主要贡献在于

  1. 分析了噪声水平和图像patch的协方差矩阵的特征值之间的关系;
  2. 提出了一种无参方法在多项式时间内从特征值估计噪声水平的方法,并给与了理论证明;

Analysis

这篇文章的方法是针对于加性,独立,同质性的高斯噪声。所谓“同质性”指的是噪声方差对于图像中所有像素都是一个常数,不会随着位置和颜色强度改变。由于一般认为图像的噪声都是零均值噪声,所谓的噪声水平估计就是通过单张噪声图像估计高斯噪声的方差(或标准差)。
该文章的方法是基于以下观察:从无噪声图像中提取的patch常常处于一个低维子空间中,而不是均匀分布于所有空间中。所以噪声的方差就可以从冗余的空间维度上进行估计,那么噪声估计问题就变成了如何选择冗余维度的问题。

Method

把一张图像分解为一系列的patch X s = { x t } t = 1 s ∈ R r × s X_s=\{x_t\}^s_{t=1}\in\mathbb{R}^{r\times s} Xs={xt}t=1sRr×s。如果图像大小为 M × N × c M\times N\times c M×N×c,则 X s X_s Xs包含 s = ( M − d + 1 ) ( N − d + 1 ) s=(M-d+1)(N-d+1) s=(Md+1)(Nd+1)个大小为 d × d × c d\times d\times c d×d×c的patch。然后将所有这些patch都变成向量,其维度为 r = c d 2 r=cd^2 r=cd2。对于集 X s X_s Xs中任意一个向量 x t x_t xt,其可以分解为:
x t = x ^ t + e t x_t=\hat{x}_t+e_t xt=x^t+et

其中, x ^ t \hat{x}_t x^t是对应的无噪声图像patch, e t e_t et表示加性高斯白噪声, e t ∼ N r ( 0 , σ 2 I ) e_t\sim N_r(0,\sigma ^2I) etNr(0,σ2I)

特征值

从下图中可以看出,无噪声图像patch的特征值多数为0(即说明其位于低维子空间),而噪声图像patch的特征值多数位于真实噪声方差50附近,但不是精确为50。
这里写图片描述
所以如何精确的获得噪声方差是需要解决的问题。
计算 x t x_t xt的协方差矩阵可得
Σ x = 1 s ∑ t = 1 s ( x t − μ ) ( x t − μ ) T \Sigma_x=\frac{1}{s}\sum^s_{t=1}(x_t-\mu)(x_t-\mu)^T Σx=s1t=1s(xtμ)(xtμ)T

其中, μ = 1 s ∑ t = 1 s x t \mu=\frac{1}{s}\sum^s_{t=1}x_t μ=s1t=1sxt为其平均值。
对其做特征值分解可得
Σ x = R Λ R T = R [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ r ] R T \Sigma_x=R\Lambda R^T= R\left[\begin{matrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r \\ \end{matrix}\right]R^T Σx=RΛRT=Rλ1000λ2000λrRT

x t x_t xt可以表示为(此处 y t y_t yt与原文表达意思不同)
x t = R y t x_t=Ry_t xt=Ryt

假设干净的patch位于 m m m维线性空间中, m ≪ r m\ll r mr,则
x ^ t = A y ^ t \hat{x}_t=A\hat{y}_t x^t=Ay^t

其中, R = [ A , U ] R=[A,U] R=[A,U] A ∈ R r × m A\in \mathbb{R}^{r\times m} ARr×m表示 m m m维的子空间。
综上可知,
x t = R y t = R [ y ^ t , 0 ] + e t = [ A , U ] [ y ^ t , 0 ] + e t x_t=Ry_t=R\left[ \begin{matrix} \hat{y}_t,\\ \mathbf{0}\\ \end{matrix}\right]+e_t=\left[ A,U \right] \left[ \begin{matrix} \hat{y}_t,\\ \mathbf{0}\\ \end{matrix}\right]+e_t xt=Ryt=R[y^t,0]+et=[A,U][y^t,0]+et

公式两边乘以 R T R^T RT
R T x t = [ y ^ t , 0 ] + R T e t = [ y ^ t + A T e t , U T e t ] R^Tx_t=\left[ \begin{matrix} \hat{y}_t,\\ \mathbf{0}\\ \end{matrix}\right]+R^Te_t=\left[ \begin{matrix} \hat{y}_t+A^Te_t,\\ U^Te_t\end{matrix}\right] RTxt=[y^t,0]+RTet=[y^t+ATet,UTet]

通过 R T R^T RT将噪声部分 e t e_t et x t x_t xt中分离出来,且根据高斯函数性质, n t = U T e t n_t=U^Te_t nt=UTet是服从高斯分布 N r − m ( 0 , σ 2 I ) N_{r-m}(0,\sigma^2I) Nrm(0,σ2I)的随机变量。
R T x t R^Tx_t RTxt的协方差为
1 s ∑ t = 1 s ( R T x t ) ( R T x t ) T = R T Σ x R = Λ \frac{1}{s}\sum^s_{t=1}(R^Tx_t)(R^Tx_t)^T=R^T\Sigma_xR=\Lambda s1t=1s(RTxt)(RTxt)T=RTΣxR=Λ

为了估计噪声方差,将特征值 S = { λ i } i = 1 r S=\{\lambda_i\}^r_{i=1} S={λi}i=1r分成两个部分,其中, S 1 = { λ 1 } i = 1 m S_1=\{\lambda_1\}^m_{i=1} S1={λ1}i=1m表示主维度的特征值, S 2 = { λ 1 } i = m + 1 r S_2=\{\lambda_1\}^r_{i=m+1} S2={λ1}i=m+1r表示冗余维度的特征值。用冗余维度的特征值估计噪声方差。
由于冗余维度向量 n t = U T e t n_t=U^Te_t nt=UTet服从高斯分布 N r − m ( 0 , σ 2 I ) N_{r-m}(0,\sigma^2I) Nrm(0,σ2I),对于向量 n t n_t nt中的每一个元素 n t [ i ] n_t[i] nt[i]也是服从高斯分布N(0,\sigma^2)的随机变量,由于
λ i = 1 s ∑ t = 1 s n t [ i ] 2 , i ∈ m + 1 , m + 2 , . . , r \lambda_i=\frac{1}{s}\sum^s_{t=1}n_t[i]^2, i\in{m+1,m+2,..,r} λi=s1t=1snt[i]2,im+1,m+2,..,r

则特征值 λ i ∈ S 2 \lambda_i\in S_2 λiS2也是均值为噪声方差 σ 2 \sigma^2 σ2的随机变量。
这里放上文章中的引理:
这里写图片描述

维度选择

下图表示噪声图像特征值的直方图,可以看出除了少数比较大的异常值(主维度的特征值)以外,其余的特征值是服从高斯分布的,且根据上面的引理,其均值(期望)就是噪声方差。
这里写图片描述
所以现在的任务就是估计主维度的数量,去除其特征值,即判断特征值是否属于 S 2 S_2 S2
放上文章另一个定理
这里写图片描述
其说明,当集合 S S S中的冗余维度足够多时,可以通过判断 S S S的平均值与其中值是否相等,来判断 S S S是否存在异常值。我是从另一个角度理解的,由于冗余维度的特征值服从高斯分布,高斯分布的均值等于其中值,而异常值的存在破坏了这种等价关系,随着异常值的剔除,其中值和均值逐渐接近。
在文章中,patch大小设为 8 × 8 8\times 8 8×8,则 X = { x t } t = 1 s X=\{x_t\}^s_{t=1} X={xt}t=1s维度为192,则主维度的数量不能超过67(具体证明可参见原文)。

算法

根据以上分析,则可以得到噪声水平估计算法,总体来说,就是通过剔除 S S S中的异常值,得到冗余维度的特征值,然后冗余维度的特征值的期望(均值)就是噪声的方差。
这里写图片描述

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值