灰色理论
通过对原始数据的处理挖掘系统变动规律,建立相应微分方程,从而预测事物未来发展状况。
优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小;
缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
灰色预测模型
在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利用的数据情况少下可用,一般会加上修正因子使结果更准确。
灰色系统是指“部分信息已知,部分信息未知“的”小样本“,”贫信息“的不确定系统,以灰色模型(G,M)为核心的模型体系。
灰色预测模型建模机理
灰色系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分方程,进而用离散数据列建立微分方程形式的动态模型。
灰色预测模型实验
以sin(pi*x/20)函数为例,以单调性为区间检验灰色模型预测的精度
通过实验可以明显地看出,灰色预测对于单调变化的序列预测精度较高,但是对波动变化明显的序列而言,灰色预测的误差相对比较大。究其原因,灰色预测模型通过AGO累加生成序列,在这个过程中会将不规则变动视为干扰,在累加运算中会过滤掉一部分变动,而且由累加生成灰指数律定理可知,当序列足够大时,存在级比为0.5的指数律,这就决定了灰色预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。
本文所用测试代码:
clc
clear all
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)。
% 原始数据的处理方法是一次累加法。
x=[0:1:10];
x1=[10:1:20];
x2=[0:1:20];
y=sin(pi*x/20);
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
B(