mysql8.x + sqlyog注册

本文介绍了如何在Windows上卸载、安装MySQL8.x服务,包括使用mysqld命令进行初始化、安装服务以及启动和停止服务。此外,还提到了sqlyog的注册码,并讨论了MySQL中的存储引擎如MyISAM和InnoDB的区别,以及数据存储的位置。最后,文章提到了表的删除操作中TRUNCATE与DELETE的区别,并强调了自增列在不同引擎下的行为差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 移除服务

在cmd中输入 mysqld --remove mysql或者mysqld --remove mysql8来移除服务。然后进入MySQL安装目录中找到data文件,清空其中全部文件。
在这里插入图片描述

  • 安装

以管理员身份运行cmd命令行窗口,进入MySQL的bin目录。 执行mysqld --initialize --console初始化命令,完成初始化并获得初始密码 。执行mysqld install命令安装MySQL数据库。执行net start mysql命令启动MySQL数据库本地服务。执行mysql -hlocalhost -uroot -p命令进入数据库
在这里插入图片描述
在这里插入图片描述

mysqld --remove mysql
mysqld --initialize --console
mysqld install
net start mysql
mysql -hlocalhost -uroot -p
alter user ‘root’@‘localhost’ identified with mysql_native_password by ‘123456’;
mysql -uroot -p123456
exit
net stop mysql

sqlyog注册码
name-ttrar
key----59adfdfe-bcb0-4762-8267-d7fccf16beda

  • mysql引擎
    MyISAM , InnoDB , HEAP , BOB , CSV等…

    常见的 MyISAM 与 InnoDB 类型:

    ·引擎 · 事务处理 数据行锁定 外键约束 全文索引 表空间大小
    MyISAM 不支持 不支持 不支持 支持
    InnoDB 支持 支持 支持 不支持 约:MyISAM两倍

    MyISAM : 节约空间及相应速度(早些年)
    InnoDB : 安全性 , 事务处理及多用户操作数据表(默认)

  • 存储
    MySQL数据表以文件方式存放在磁盘中 包括表文件 , 数据文件 , 以及数据库的选项文件
    位置 : Mysql安装目录\data\下存放数据表 . 目录名对应数据库名 , 该目录下文件名对应数据表 .

    InnoDB类型数据表只有一个 *.frm文件 , 以及上一级目录的ibdata1文件

    MyISAM类型数据表对应三个文件 :

    • . frm — 表结构定义文件

    • . MYD — 数据文件 ( data )

    • . MYI — 索引文件 ( index )

SHOW CREATE DATABASE school;--查看创建数据库的语句
### 的深度优先搜索算法实现 作为一种特殊的图结构,在深度优先搜索(DFS)中具有广泛的应用。对于而言,深度优先搜索可以通过递归或者栈的方式实现。 #### 递归方式实现 DFS 递归是最常见的实现方法之一,其核心思想是从根节点出发,依次访问每一个子节点并深入下去,直到到达叶子节点后再回溯到父节点继续探索其他分支。 以下是基于 Python 的递归实现: ```python def dfs_recursive(node, visited): if node is None: return # 访问当前节点 visited.add(node) print(f"Visiting {node}") # 假设打印表示访问操作 # 遍历相邻节点 for neighbor in get_neighbors(node): if neighbor not in visited: dfs_recursive(neighbor, visited) # 辅助函数获取邻居节点 (假设为二叉左/右孩子) def get_neighbors(node): neighbors = [] if hasattr(node, 'left') and node.left: neighbors.append(node.left) if hasattr(node, 'right') and node.right: neighbors.append(node.right) return neighbors ``` 上述代码展示了如何通过递归访问一棵的所有节点[^1]。 #### 使用栈迭代实现 DFS 除了递归外,还可以使用显式的栈数据结构来模拟递归过程。这种方式尤其适用于处理深嵌套的情况以避免堆栈溢出问题。 下面是一个非递归版本的例子: ```python def dfs_iterative(root): stack = [root] visited = set() while stack: node = stack.pop() if node is None or node in visited: continue visited.add(node) print(f"Visiting {node}") # 将邻接点压入栈中 for neighbor in reversed(get_neighbors(node)): if neighbor not in visited: stack.append(neighbor) ``` 此方法同样能够完成对整个形结构的有效遍历[^2]。 --- ### 应用领域分析 深度优先搜索不仅限于理论研究,在多个实际场景下也发挥着重要作用: 1. **路径查找**: 当需要找出两个特定顶点之间是否存在连接关系时,可以采用 DFS 来验证可达性。 2. **连通分量计算**: 对于无向图来说,利用多次调用 DFS 可识别所有独立部分即强连通分量。 3. **拓扑排序**: 如果目标是有向无环图(DAG),那么借助后序排列配合逆序输出即可获得合法序列安排方案。 4. **游戏AI决策制定**: 如国际象棋程序可能运用剪枝优化后的 DFS 探索状态空间从而做出最佳移动选择[^3]. 综上所述,无论是基础的数据结构学习还是复杂系统的开发设计阶段,掌握好 DFS 技巧都是非常有益处的一项技能[^4]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值