Batch_size

  • 结论 1:无论我们如何准确估计梯度,训练存在一个最大步长。
    • 这个结论告诉我们,即使噪声可以减小,步长(也就是每次更新的幅度)也存在一个上限。这个上限由梯度的大小和 batch size 共同决定。如果步长过大,训练过程会不稳定,甚至可能导致发散。
  • 结论 2:batch size 越大,最优的步长就越大(有一个上限)。
    • 当 batch size 增大时,我们可以使用更大的步长进行更新。因为 batch size 增大,意味着我们从数据中采样到的梯度会更接近真实梯度,从而减少了噪声影响,因此可以更大胆地调整模型参数。
    • 但是,这个步长的增大也是有限的,超过某个临界点后,继续增大 batch size 并不能继续显著提升模型性能。
  • 当 batch size 太小时,梯度估计中存在大量噪声,因此模型需要使用较小的步长来进行稳定的训练。
  • 随着 batch size 增大,梯度噪声逐渐减小,允许使用更大的步长,这样训练速度加快,但这种效果在达到某个阈值后会逐渐减弱,继续增大 batch size 反而会造成计算资源浪费而不带来显著性能提升。

1. 步数(Steps)

  • 步数指的是模型在训练过程中所经历的参数更新次数
  • 每个步数对应一次模型参数的更新,即模型的权重和偏置根据梯度方向进行了调整。
  • 一般来说,训练中的步数可以与训练中的迭代次数等同。假设你有一个包含 1000 个样本的数据集,batch size 是 100,那么你需要 10 个步数才能遍历完整个数据集一次。

2. 步长(Learning Rate/Step Size)

  • 步长是指每次更新模型时,权重更新的幅度。换句话说,它是模型根据计算出的梯度信息更新参数时的速度。
  • 如果步长太小,模型训练得很慢,可能需要很多步数才能达到收敛状态。
  • 如果步长太大,模型可能会跳过最优解,导致发散,无法有效学习。

3. 模型的更新次数(Optimization Steps/Iterations)

  • 模型的更新次数指的是在整个训练过程中,模型权重被更新的总次数。
  • 每当进行一次 forward-backward pass(前向传播和后向传播)之后,计算得到梯度,并对模型权重进行更新,这就算一次更新。

4. Batch Size

  • batch size 是每次模型更新时,使用多少数据样本来计算梯度。它定义了每个训练 step 中处理的数据量。
  • 小的 batch size 会带来更多的噪声,因为梯度更新基于较少的数据样本,导致梯度估计不准确,但可能带来更好的泛化效果。
  • 大的 batch size 则会使梯度更稳定,更接近整体数据的真实梯度,但也会增加计算开销。

5. 它们之间的关系

  • 步数与 batch size 的关系

    • batch size 决定了你在一次更新中处理多少数据。假设你有 10,000 个样本,batch size 为 100,那么一次 epoch(遍历整个数据集)需要 10,000100=100\frac{10,000}{100} = 10010010,000​=100 个步数。如果你增大 batch size,例如变为 200,那么每个步数处理的数据量加倍,但所需的步数减少一半,变为 50。
    • 更大 batch size 意味着每个步数处理更多数据,但需要的总步数会减少。
  • 步长与模型更新次数的关系

    • 步长(learning rate)直接影响每次更新的幅度。如果步长较大,每次更新的幅度较大,模型可能会快速到达收敛区域,减少需要的总更新次数。但如果步长过大,可能导致跳过全局最优解,甚至发散。
    • 步长较小时,模型的更新会更加细致,需要更多的步数才能收敛。
  • 步数与模型更新次数的关系

    • 每次模型更新都会消耗一个步数。因此,模型的更新次数就是步数每一个优化步骤都代表一次模型参数的更新
    • 如果你有 10,000 个样本,batch size 是 100,那么一个 epoch 包含 100 个步数,意味着模型的权重将更新 100 次。

6. 总结

  • batch size 增大,每次模型更新使用的数据量增加,所需的步数减少,但每次更新的计算量更大。
  • 步长(learning rate)越大,每次更新的幅度越大,可能减少更新次数,但过大会导致不稳定。
  • 步数决定了模型的更新次数,步数越多,模型被更新的次数越多。
  • **优化步骤(模型更新次数)**是模型每次根据梯度更新权重的过程,受步长、batch size 和训练目标的共同影响。

28微调大模型时,优化器如何选择?

  • Adam 和 AdamW 是常用的优化器,它们基于梯度的一阶和二阶动量(动量指的是梯度在多个步骤之间的累积)来调整学习率,因而可以加速训练并提高收敛性。

  • Sophia 优化器 是另一种值得研究的优化器。Sophia 的特别之处在于,它使用梯度曲率而非梯度方差进行归一化。曲率代表了梯度的变化率,能够更好地捕捉损失函数的曲面特性。这可能比 Adam 这种基于梯度方差的优化器更有效,提高训练效率和模型性能

29. 哪些因素会影响内存使用?

内存使用是训练大模型时需要特别关注的因素,受多个方面的影响:

  • 模型大小:模型的参数数量越多,占用的内存也越大。模型的规模与内存使用直接相关,特别是对于大型的 Transformer 模型。

  • 批量大小(Batch Size):批量大小越大,每次更新时需要同时处理的样本数量越多,这会消耗更多内存。如果 batch size 设置得过大,可能导致内存不足。

  • LORA 参数数量:LORA(Low-Rank Adaptation)是一种微调方法,通过添加低秩矩阵来调整模型。尽管它可以减少内存需求,但如果 LORA 的参数数量增加,也会导致内存消耗增加。

  • 数据集特性:数据集的特性也会影响内存使用。特别是,较短的训练序列(即较短的输入文本或样本)会占用更少的内存,而较长的序列则会消耗更多内存。因此,通过控制输入的长度,可以有效地管理内存使用。

30. 进行领域大模型预训练时应用哪些数据集比较好?

预训练大模型的质量和效果与所使用的数据集密切相关。以下数据源通常是优质的选择:

  • 书籍和论文:这些数据的质量较高,语言结构相对规范,并且领域相关性较强。例如,在进行科学或技术领域的大模型预训练时,使用书籍和论文有助于模型学习更丰富、专业的知识。由于这些数据通常覆盖多个领域、提供密集的知识密度,因此在预训练中表现良好。

  • 领域相关的网站和新闻内容:领域特定的内容,如专业网站和新闻网站,也可以为模型提供大量相关知识。这些内容反映了实时的领域发展和语言使用模式,使模型更适合特定领域的应用。

在大模型微调过程中,数据集的构建非常关键,直接影响模型的最终效果。以下是对内容的详细解释:

1. 选取的训练数据要干净、并具有代表性

  • 数据的质量比数量更重要:虽然大规模的数据对训练大模型有帮助,但如果数据质量不好(如包含噪音、错误或不相关信息),模型可能会学到不正确或无用的知识。相比之下,干净的数据(即没有太多噪音、标签准确的数据)能帮助模型更好地理解和泛化。

  • 具有代表性:训练数据应该能覆盖目标任务的主要场景和变体。例如,如果你在微调一个语言模型用于医疗文本,数据应该包括各种医疗场景和术语,使得模型对该领域有足够的知识。

2. 构建的 prompt 尽量多样化,提高模型的鲁棒性

  • Prompt 多样性:在微调大模型时,使用不同格式、结构和内容的 prompt(提示词)能帮助模型在面对不同问题和任务时表现得更鲁棒。Prompt 越多样化,模型就能学到更多不同类型的问题解法,避免过度拟合某一种固定的问法。

  • 鲁棒性:通过多样化的 prompt,模型在面对新的、未见过的问题时表现会更好,也就是模型的泛化能力会更强。这有助于确保模型不会仅仅针对固定的模式做出预测,而是能够适应变化和新情况。

3. 进行多任务同时训练时,要使各个任务的数据量平衡

  • 多任务训练:如果你在训练过程中同时处理多个任务,确保各个任务的数据量平衡非常重要。假设你同时训练模型进行文本分类和文本生成,如果文本分类的数据量远多于文本生成,那么模型可能会在文本分类任务上表现得更好,而忽略文本生成任务。因此,平衡各任务的数据量能够避免模型偏向某个任务。

  • 数据不平衡的影响:如果某个任务的数据量远多于其他任务,模型可能会倾向于优先优化数据量大的任务,导致其他任务的表现下降。通过合理的分配和调整数据量,可以让模型在不同任务上表现均衡。

总结:

  • 数据质量和代表性确保模型学到有用的、准确的信息。
  • Prompt 多样化帮助提高模型的适应能力和鲁棒性,提升面对不同任务和问题的表现。
  • 多任务数据量平衡有助于避免模型偏向某个特定任务,确保整体性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值