- 结论 1:无论我们如何准确估计梯度,训练存在一个最大步长。
- 这个结论告诉我们,即使噪声可以减小,步长(也就是每次更新的幅度)也存在一个上限。这个上限由梯度的大小和 batch size 共同决定。如果步长过大,训练过程会不稳定,甚至可能导致发散。
- 结论 2:batch size 越大,最优的步长就越大(有一个上限)。
- 当 batch size 增大时,我们可以使用更大的步长进行更新。因为 batch size 增大,意味着我们从数据中采样到的梯度会更接近真实梯度,从而减少了噪声影响,因此可以更大胆地调整模型参数。
- 但是,这个步长的增大也是有限的,超过某个临界点后,继续增大 batch size 并不能继续显著提升模型性能。
- 当 batch size 太小时,梯度估计中存在大量噪声,因此模型需要使用较小的步长来进行稳定的训练。
- 随着 batch size 增大,梯度噪声逐渐减小,允许使用更大的步长,这样训练速度加快,但这种效果在达到某个阈值后会逐渐减弱,继续增大 batch size 反而会造成计算资源浪费而不带来显著性能提升。
1. 步数(Steps):
- 步数指的是模型在训练过程中所经历的参数更新次数。
- 每个步数对应一次模型参数的更新,即模型的权重和偏置根据梯度方向进行了调整。
- 一般来说,训练中的步数可以与训练中的迭代次数等同。假设你有一个包含 1000 个样本的数据集,batch size 是 100,那么你需要 10 个步数才能遍历完整个数据集一次。
2. 步长(Learning Rate/Step Size):
- 步长是指每次更新模型时,权重更新的幅度。换句话说,它是模型根据计算出的梯度信息更新参数时的速度。
- 如果步长太小,模型训练得很慢,可能需要很多步数才能达到收敛状态。
- 如果步长太大,模型可能会跳过最优解,导致发散,无法有效学习。
3. 模型的更新次数(Optimization Steps/Iterations):
- 模型的更新次数指的是在整个训练过程中,模型权重被更新的总次数。
- 每当进行一次 forward-backward pass(前向传播和后向传播)之后,计算得到梯度,并对模型权重进行更新,这就算一次更新。
4. Batch Size:
- batch size 是每次模型更新时,使用多少数据样本来计算梯度。它定义了每个训练 step 中处理的数据量。
- 小的 batch size 会带来更多的噪声,因为梯度更新基于较少的数据样本,导致梯度估计不准确,但可能带来更好的泛化效果。
- 大的 batch size 则会使梯度更稳定,更接近整体数据的真实梯度,但也会增加计算开销。
5. 它们之间的关系:
-
步数与 batch size 的关系:
- batch size 决定了你在一次更新中处理多少数据。假设你有 10,000 个样本,batch size 为 100,那么一次 epoch(遍历整个数据集)需要 10,000100=100\frac{10,000}{100} = 10010010,000=100 个步数。如果你增大 batch size,例如变为 200,那么每个步数处理的数据量加倍,但所需的步数减少一半,变为 50。
- 更大 batch size 意味着每个步数处理更多数据,但需要的总步数会减少。
-
步长与模型更新次数的关系:
- 步长(learning rate)直接影响每次更新的幅度。如果步长较大,每次更新的幅度较大,模型可能会快速到达收敛区域,减少需要的总更新次数。但如果步长过大,可能导致跳过全局最优解,甚至发散。
- 步长较小时,模型的更新会更加细致,需要更多的步数才能收敛。
-
步数与模型更新次数的关系:
- 每次模型更新都会消耗一个步数。因此,模型的更新次数就是步数。每一个优化步骤都代表一次模型参数的更新。
- 如果你有 10,000 个样本,batch size 是 100,那么一个 epoch 包含 100 个步数,意味着模型的权重将更新 100 次。
6. 总结:
- batch size 增大,每次模型更新使用的数据量增加,所需的步数减少,但每次更新的计算量更大。
- 步长(learning rate)越大,每次更新的幅度越大,可能减少更新次数,但过大会导致不稳定。
- 步数决定了模型的更新次数,步数越多,模型被更新的次数越多。
- **优化步骤(模型更新次数)**是模型每次根据梯度更新权重的过程,受步长、batch size 和训练目标的共同影响。
28微调大模型时,优化器如何选择?
-
Adam 和 AdamW 是常用的优化器,它们基于梯度的一阶和二阶动量(动量指的是梯度在多个步骤之间的累积)来调整学习率,因而可以加速训练并提高收敛性。
-
Sophia 优化器 是另一种值得研究的优化器。Sophia 的特别之处在于,它使用梯度曲率而非梯度方差进行归一化。曲率代表了梯度的变化率,能够更好地捕捉损失函数的曲面特性。这可能比 Adam 这种基于梯度方差的优化器更有效,提高训练效率和模型性能。
29. 哪些因素会影响内存使用?
内存使用是训练大模型时需要特别关注的因素,受多个方面的影响:
-
模型大小:模型的参数数量越多,占用的内存也越大。模型的规模与内存使用直接相关,特别是对于大型的 Transformer 模型。
-
批量大小(Batch Size):批量大小越大,每次更新时需要同时处理的样本数量越多,这会消耗更多内存。如果 batch size 设置得过大,可能导致内存不足。
-
LORA 参数数量:LORA(Low-Rank Adaptation)是一种微调方法,通过添加低秩矩阵来调整模型。尽管它可以减少内存需求,但如果 LORA 的参数数量增加,也会导致内存消耗增加。
-
数据集特性:数据集的特性也会影响内存使用。特别是,较短的训练序列(即较短的输入文本或样本)会占用更少的内存,而较长的序列则会消耗更多内存。因此,通过控制输入的长度,可以有效地管理内存使用。
30. 进行领域大模型预训练时应用哪些数据集比较好?
预训练大模型的质量和效果与所使用的数据集密切相关。以下数据源通常是优质的选择:
-
书籍和论文:这些数据的质量较高,语言结构相对规范,并且领域相关性较强。例如,在进行科学或技术领域的大模型预训练时,使用书籍和论文有助于模型学习更丰富、专业的知识。由于这些数据通常覆盖多个领域、提供密集的知识密度,因此在预训练中表现良好。
-
领域相关的网站和新闻内容:领域特定的内容,如专业网站和新闻网站,也可以为模型提供大量相关知识。这些内容反映了实时的领域发展和语言使用模式,使模型更适合特定领域的应用。
在大模型微调过程中,数据集的构建非常关键,直接影响模型的最终效果。以下是对内容的详细解释:
1. 选取的训练数据要干净、并具有代表性:
-
数据的质量比数量更重要:虽然大规模的数据对训练大模型有帮助,但如果数据质量不好(如包含噪音、错误或不相关信息),模型可能会学到不正确或无用的知识。相比之下,干净的数据(即没有太多噪音、标签准确的数据)能帮助模型更好地理解和泛化。
-
具有代表性:训练数据应该能覆盖目标任务的主要场景和变体。例如,如果你在微调一个语言模型用于医疗文本,数据应该包括各种医疗场景和术语,使得模型对该领域有足够的知识。
2. 构建的 prompt 尽量多样化,提高模型的鲁棒性:
-
Prompt 多样性:在微调大模型时,使用不同格式、结构和内容的 prompt(提示词)能帮助模型在面对不同问题和任务时表现得更鲁棒。Prompt 越多样化,模型就能学到更多不同类型的问题解法,避免过度拟合某一种固定的问法。
-
鲁棒性:通过多样化的 prompt,模型在面对新的、未见过的问题时表现会更好,也就是模型的泛化能力会更强。这有助于确保模型不会仅仅针对固定的模式做出预测,而是能够适应变化和新情况。
3. 进行多任务同时训练时,要使各个任务的数据量平衡:
-
多任务训练:如果你在训练过程中同时处理多个任务,确保各个任务的数据量平衡非常重要。假设你同时训练模型进行文本分类和文本生成,如果文本分类的数据量远多于文本生成,那么模型可能会在文本分类任务上表现得更好,而忽略文本生成任务。因此,平衡各任务的数据量能够避免模型偏向某个任务。
-
数据不平衡的影响:如果某个任务的数据量远多于其他任务,模型可能会倾向于优先优化数据量大的任务,导致其他任务的表现下降。通过合理的分配和调整数据量,可以让模型在不同任务上表现均衡。
总结:
- 数据质量和代表性确保模型学到有用的、准确的信息。
- Prompt 多样化帮助提高模型的适应能力和鲁棒性,提升面对不同任务和问题的表现。
- 多任务数据量平衡有助于避免模型偏向某个特定任务,确保整体性能。