高效参数微调

一、增加额外参数的方法

这些方法通过向模型中添加额外的可训练参数,而不修改原有的预训练模型参数。

1. Prefix Tuning(前缀微调)
  • 原理:在每一层的输入添加一组可训练的“前缀”向量,这些前缀向量会影响模型的输出。
  • 特点:只训练前缀向量,预训练模型的参数保持不变。
  • 优势:参数量小,适用于多任务场景。
2. Prompt Tuning(提示词微调)
  • 原理:在输入文本前添加一系列可训练的“提示词”或“提示向量”。
  • 特点:仅训练这些提示词的嵌入向量,模型其他参数不变。
  • 优势:实现了对任务的定制化,而无需大规模更新模型参数。
3. Adapter Tuning(适配器微调)
  • 原理:在模型的每一层插入小型的“适配器”模块,这些模块是可训练的。
  • 特点:仅训练适配器模块,原始模型参数冻结。
  • 优势:适配器模块体积小,便于在不同任务间共享主模型。
适配器的变体
  • 并行适配器:将适配器并行添加到模型层中,而不是串联。
  • Compacter:通过参数共享和低秩分解进一步压缩适配器的参数量。

二、选取一部分参数更新

1. BitFit(仅微调偏置项)
  • 原理:只对模型中的偏置项(bias)进行训练,其他参数保持不变。
  • 特点:偏置项的数量远小于权重参数,因此训练开销很小。
  • 优势:显著降低了训练参数量,同时在某些任务上性能接近全参数微调。

三、引入重参数化的方法

这些方法通过改变模型参数的表示方式,减少需要更新的参数数量。

1. LoRA(低秩适配器)
  • 原理:将权重矩阵的更新表示为低秩矩阵的乘积,只训练这些低秩矩阵。
  • 特点:减少了训练参数量,同时保留了模型的表达能力。
  • 优势:适用于大规模模型的微调,节省内存和计算资源。
2. AdaLoRA(自适应LoRA)
  • 原理:在LoRA的基础上,自适应地调整低秩矩阵的秩,使之在训练过程中动态变化。
  • 特点:能够根据参数的重要性分配不同的容量。
  • 优势:提高了模型的灵活性和性能。
3. QLoRA
  • 原理:将模型的权重量化为低精度(如4位),同时使用LoRA进行微调。
  • 特点:结合了量化和参数高效微调的优势。
  • 优势:大幅减少了内存占用和计算量,适合资源受限的环境。

四、混合高效微调方法

这些方法结合多种参数高效微调技术,进一步提升性能。

1. MAM Adapter
  • 原理:结合了多头注意力机制的调制和适配器方法,对模型进行高效微调。
  • 特点:在适配器中加入了对注意力机制的调节。
  • 优势:增强了模型对任务特定信息的捕获能力。
2. UniPELT
  • 原理:统一了多种参数高效微调方法(如Prefix Tuning、Adapter Tuning、LoRA等),提供一个灵活的框架。
  • 特点:可以根据任务需求选择或组合不同的微调策略。
  • 优势:提高了模型在不同任务和场景下的适应性。

不同方法之间的差异

  • 参数更新部分:一些方法(如BitFit)只更新模型现有的部分参数,另一些方法(如Adapter Tuning)则增加新的参数模块。
  • 模型结构影响:增加额外参数的方法会改变模型的结构,而仅更新部分参数的方法保持模型结构不变。
  • 性能和效率:不同方法在性能和训练效率上有所差异,需要根据具体任务选择。

当前参数高效微调方法的问题

  • 适用性限制:某些方法在特定任务或模型上效果不佳。
  • 优化难度:仅训练少量参数可能导致优化困难,收敛速度变慢。
  • 模型兼容性:不是所有方法都能直接应用于所有类型的预训练模型。

最佳实践

  • 方法选择:根据任务的需求和资源限制,选择合适的微调方法。
  • 参数调节:对于方法中的超参数(如LoRA的秩),需要进行调优以获得最佳性能。
  • 方法组合:可以尝试将多种方法结合,发挥各自的优势。

引入重参数化的方法详解

您提到不太理解“引入重参数化的方法,这些方法通过改变模型参数的表示方式,减少需要更新的参数数量”。下面我将详细解释这一概念,帮助您理解这些方法是如何工作的。


什么是重参数化?

重参数化(Reparameterization)是指通过重新定义或重新表达模型的参数,使得模型在训练或推理时更高效。在参数高效微调的背景下,重参数化的方法通过改变参数的表示方式,使得我们只需要更新一小部分参数,而不必调整整个模型的所有参数。


为什么要引入重参数化?

大型预训练模型(如BERT、GPT-3)通常包含数以亿计的参数,直接微调所有参数有以下问题:

  • 计算资源消耗大:需要大量的计算能力和存储空间。
  • 训练时间长:全参数微调需要更多的训练时间。
  • 参数冗余:并非所有参数都对特定任务有重大影响。

重参数化的方法旨在:

  • 减少需要更新的参数数量:只更新少量关键参数。
  • 降低计算和存储成本:减少计算量和显存占用。
  • 保持或接近原始性能:在减少参数的同时,尽可能保持模型性能。

重参数化的方法示例

以下是一些常用的重参数化方法:

1. LoRA(Low-Rank Adaptation)

基本思想

  • 假设:在特定任务中,模型参数的变化可以近似为低秩矩阵。
  • 方法:将权重矩阵的更新部分表示为两个小矩阵的乘积,即低秩分解。

公式

ΔW=A×B

其中:

  • W:原始权重矩阵。
  • ΔW:权重的更新量。
  • ARd×rBRr×k:新引入的可训练小矩阵。
  • r:远小于 d 和 k 的秩值。

优势

  • 参数量减少A 和 B 的参数量远小于 W
  • 只需训练 A 和 B:原始权重 W 保持不变。
  • 易于实现:不需要改变模型的整体结构。

2. AdaLoRA(Adaptive LoRA)

基本思想

  • 动态调整秩 r:根据参数在特定任务中的重要性,自适应地调整秩大小。
  • 方法:在训练过程中,自动增大或减小 r,以优化性能和参数量的平衡。

优势

  • 更灵活:适应不同参数的重要性,资源分配更合理。
  • 性能提升:在相同参数量下,可能获得更好的性能。

3. QLoRA

基本思想

  • 结合量化和LoRA:将模型参数量化为低精度(如4位),同时使用LoRA进行微调。
  • 方法:在降低模型精度的同时,应用低秩更新。

优势

  • 显存占用更小:量化降低了模型的存储需求。
  • 计算更快:低精度计算速度更快。
  • 参数高效:结合了量化和低秩更新的优势。

如何理解重参数化减少了参数数量?

1. 参数量对比

  • 全参数微调:需要更新整个权重矩阵 W,参数量为 d×k

参数量=d×k

  • LoRA微调:只需训练 A 和 B,参数量为 d×r+r×k

参数量=d×r+r×k

由于 rd,k,因此:

d×r+r×kd×k

示例

假设:

  • d=k=1024
  • r=8

则:

  • 全参数微调参数量:1024×1024=1,048,576 个参数。
  • LoRA微调参数量:1024×8+8×1024=16,384 个参数。

参数量减少了约 64倍

2. 示例图解

图1:LoRA通过低秩分解减少了需要训练的参数数量。


重参数化的原理深入

1. 低秩近似

  • 概念:低秩矩阵可以用更少的信息表示原始矩阵的主要特征。
  • 应用:在很多情况下,模型的参数更新实际上具有低秩结构。

2. 矩阵分解

  • 奇异值分解(SVD):将矩阵分解为多个秩一矩阵的加权和。
  • 在LoRA中:通过低秩矩阵 A 和 B 的乘积近似权重更新。

3. 为什么有效

  • 参数共享:低秩分解捕捉了参数更新的主要方向,减少了冗余。
  • 泛化能力:减少参数量有助于防止过拟合,提高模型的泛化能力。

实际应用中的流程

  1. 加载预训练模型:模型参数 W 保持不变,不参与训练。
  2. 引入可训练参数:添加 A 和 B 等小矩阵,这些是需要训练的参数。
  3. 前向传播

y=f(WxWx)=f(Wx+(A×B)x)

    • x:输入数据。
    • y:模型输出。
  1. 反向传播:只计算并更新 A 和 B 的梯度。
  2. 推理阶段
    • 合并权重:可以将 ΔW 与 W 合并,或者在运行时计算。
    • 效率提升:由于 A 和 B 较小,对推理速度影响不大。

重参数化方法的优势总结

  • 高效性:显著减少需要更新的参数数量,降低训练成本。
  • 灵活性:可以根据需要调整秩 r,在参数量和性能之间找到平衡。
  • 适用性强:适用于各种预训练模型,且易于与其他方法结合。

可能的疑问

1. 重参数化会降低模型性能吗?

  • 一般情况下不会:虽然更新的参数量减少了,但由于捕捉了关键的更新方向,模型性能通常能够保持。
  • 需要调节:秩 r 的选择对性能有影响,可能需要根据任务调整。

2. 如何选择秩 r

  • 经验法则:从小的 r 开始(如8、16),根据验证集性能进行调整。
  • 任务相关:不同的任务可能需要不同的 r

与其他参数高效微调方法的对比

  • 增加额外参数的方法(如Adapter Tuning):需要在每一层添加适配器模块。
  • 仅更新部分参数的方法(如BitFit):只更新偏置项。
  • 重参数化的方法:通过改变参数表示,只需更新少量新参数。

重参数化方法的独特之处在于

  • 参数效率更高:相比增加额外参数的方法,参数量更少。
  • 性能保持良好:相比仅更新部分参数的方法,性能通常更接近全参数微调。

总结

引入重参数化的方法通过重新表示模型参数,实现了以下目标:

  • 减少需要更新的参数数量:只训练新引入的小矩阵。
  • 降低计算和存储成本:减少了计算量和显存占用。
  • 保持模型性能:在大多数情况下,性能与全参数微调相近。

希望以上详细解释能帮助您理解引入重参数化的方法,以及它们如何通过改变模型参数的表示方式,减少需要更新的参数数量。如有进一步疑问,请随时提问!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值