01背包
问题描述:一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?
递推公式理解:需要一个二维dp数组来记录状态,dp[i][j]表示当背包容量为j时从前i件物品所能构成的最大价值,初始化dp[i][0]=0(当背包容量为0时,不管什么情况下,最大价值都是0),dp[0][j]=0(当从前0件物品排列组合装入背包时,不管背包的容量为多少。最大价值也是0)。递推得到的dp数组的最后一个值即为问题的最大价值。
if(w[i]>j){
//如果当前物品的重量大于背包的容量,
//则背包肯定装不进这件物品,此时背包的最大价值,
//肯定是之前计算的从前i-1个物品选择所构成的最大价值dp[i-1][j]
dp[i][j] = dp[i-1][j];
}
else{
/**
如果当前物品的重量小于等于背包的容量,则需要考虑当前背包要不要装物品i
(1)dp[i-1][j] 是不装物品i的最大价值
(2)dp[i-1][j-w[i]]+v[i] 是装物品i的最大价值(如果选择装进物品i,
则需要向前寻找,前i-1个物品,在背包容量为 j-w[i] 时的最大价值,
即为dp[i-1][j-w[i]],在加上物品i的价值)
从(1)(2)中选择最大值,即为从前i件物品所能构成的最大价值
**/
dp[i][j] = max{dp[i-1][j],dp[i-1][j-w[i]]+v[i]};
}
完全背包
问题描述:完全背包(unbounded knapsack problem)与01背包不同就是每种物品可以有无限多个:一共有N种物品,每种物品有无限多个,第i(i从1开始)种物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?
递推公式理解:需要一个二维dp数组来记录状态,dp[i][j]表示当背包容量为j时从前i件物品所能构成的最大价值,初始化dp[i][0]=0(当背包容量为0时,不管什么情况下,最大价值都是0),dp[0][j]=0(当从前0件物品排列组合装入背包时,不管背包的容量为多少。最大价值也是0)。递推得到的dp数组的最后一个值即为问题的最大价值。
if(w[i]>j){
//如果当前物品的重量大于背包的容量,
//则背包肯定装不进这件物品,此时背包的最大价值,
//肯定是之前计算的从前i-1个物品选择所构成的最大价值dp[i-1][j]
dp[i][j] = dp[i-1][j];
}
else{
/**
如果当前物品的重量小于等于背包的容量,则需要考虑当前背包要不要装物品i
(1)dp[i-1][j] 是不装物品i的最大价值
(2)dp[i][j-w[i]]+v[i] 是装物品i的最大价值(如果选择装进物品i,
则需要向前寻找,前i个物品,在背包容量为 j-w[i] 时的最大价值,
即为dp[i][j-w[i]],再加上物品i的价值)
这里与01背包不同的时,为什么选择装物品i时,还要向前寻找前i个物品,
在背包容量为 j-w[i] 时的最大价值,
而不是向前寻找前 i-1个 物品背包容量为 j-w[i] 时的最大价值?
宏观上理解是因为完全背包的物品可以重复利用,
当背包容量为 j-w[i] 时可能已经放入了第i件物品。
详细的推导公式读者可自行搜索。
从(1)(2)中选择最大值,即为从前i件物品所能构成的最大价值
**/
dp[i][j] = max{dp[i-1][j],dp[i][j-w[i]]+v[i]};
}
这两种背包问题还可以通过滚动数组的形式将空间复杂度降到O(n),这里没有列出。