TensorFlow学习之——checkpoints

32 篇文章 3 订阅
17 篇文章 1 订阅

在看别人的训练网络中一开头就遇到这样一行代码:

ckpt = tf.train.get_checkpoint_state(directories.checkpoints)

鼠标放在函数名上,ctrl+B,或者ctrl+点击函数名,可以跳转到函数的定义,可以知道tf.train.get_checkpoint_state函数通过目录下的checkpoint文件找到checkpoint状态proto。

训练可能分成多次迭代,在迭代期间或者训练完成测试之前,需要将训练得到的参数保存到一个文件中,等到需要时再从文件中读取。TensorFlow提供了两种模型格式

  • checkpoints:这种格式依赖于创建模型的代码。
  • SavedModel:这种格式与创建模型的代码无关。

Checkpoints文件是这样的一个二进制文件,好比是一个中转站,Tensorflow针对这一需提供了Saver类把变量名映射到对应的tensor值,并可以从checkpoints文件中恢复变量。

再回到第一行代码,返回得到的ckpt其中有model_checkpoint_path和all_model_checkpoint_paths两个属性。其中model_checkpoint_path保存了最新的tensorflow模型文件的文件名,all_model_checkpoint_paths则有未被删除的所有tensorflow模型文件的文件名。

既然有预训练的模型,就应该把checkpoint文件放入文件夹下。checkpoint文件其实有三个文件组成,后缀名分别是.meta和.index和.data-00000-of-00001文件。

当需要恢复某个模型的参数,继续进行训练时,可以使用下面的代码(不需要加后缀,就可以同时包含三个文件),恢复训练时的最后一个模型参数:

if args.restore_last and ckpt.model_checkpoint_path: #.model_checkpoint_path保存了最新的tensorflow模型文件的文件名
    # Continue training saved model 继续训练已经保存的模型,侧面也表明之前有预训练的模型
    #saver.restore(sess, ckpt.model_checkpoint_path) #恢复模型参数,继续训练
    saver.restore(sess,'checkpoints/noiseMScsC8_epoch15.ckpt-15')  # 恢复模型参数,继续训练.预训练了15次,config中默认512次
    #https://www.cnblogs.com/darkknightzh/p/7198773.html
    print('{} restored.'.format(ckpt.model_checkpoint_path))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值