LightOJ 1074 Extended Traffic spfa+邻接表

题意:有n个点,m条有向边,每条边的权值等于(弧头的权值-弧尾的权值)的三次方,求第一个点到给定点的最短路径;


用dijkstra做了一遍,WA,再读一遍题发现边的权值可以为负,可能会产生负环,把负环上的所有点还有路径经过负环的点都标记,此处用一个dfs;


用spfa+邻接表做了一遍,期间犯了很多小错误,改了很久,RE了很多次终于过了,还是太不仔细了;


#include <iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#define N 220
#define M 44000
#define INF 0x3f3f3f3f

using namespace std;

struct node
{
    int next,val,to;
}e[M];

int head[N],d[N],mark[N],v[N],num[N],n,m,point[N],q[N];

int busyness(int a,int b)
{
    int t=point[b]-point[a];
    return t*t*t;
}

void dfs(int t)
{
    mark[t]=1;
    for(int i=head[t];i!=-1;i=e[i].next)
        if(!mark[e[i].to])
            dfs(e[i].to);
}

void spfa()
{
    memset(num,0,sizeof(num));
    memset(mark,0,sizeof(mark));
    for(int i=1;i<=n;i++)
        v[i]=0,d[i]=INF;
    d[1]=0;
    v[1]=1;
    int cnt=0;
    q[0]=1;
    num[1]=1;
    while(cnt>=0)
    {
        int t=q[cnt--];
        v[t]=0;
        if(mark[t]) continue;
        for(int i=head[t];i!=-1;i=e[i].next)
        {
            int b=e[i].to;
            if(mark[b]) continue;
            if(d[b]>d[t]+e[i].val)
            {
                d[b]=d[t]+e[i].val;
                if(!v[b])
                {
                    q[++cnt]=b;
                    v[b]=1;
                    if(++num[b]>n)  dfs(b);
                }
            }
        }
    }
}

int main()
{
    int T;
    cin>>T;
    for(int kase=1;kase<=T;kase++)
    {
        cin>>n;
        for(int i=1;i<=n;i++)
            scanf("%d",&point[i]),head[i]=-1;
        cin>>m;
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            e[i].to=b;
            e[i].next=head[a];
            e[i].val=busyness(a,b);
            head[a]=i;
        }
        spfa();
        int q;
        cin>>q;
        printf("Case %d:\n",kase);
        for(int i=0;i<q;i++)
        {
            int x;
            scanf("%d",&x);
            if(d[x]==INF||d[x]<3||mark[x])
                cout<<'?'<<endl;
            else
                cout<<d[x]<<endl;
        }
    }
}



Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要求出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值