题意:有n个点,m条有向边,每条边的权值等于(弧头的权值-弧尾的权值)的三次方,求第一个点到给定点的最短路径;
用dijkstra做了一遍,WA,再读一遍题发现边的权值可以为负,可能会产生负环,把负环上的所有点还有路径经过负环的点都标记,此处用一个dfs;
用spfa+邻接表做了一遍,期间犯了很多小错误,改了很久,RE了很多次终于过了,还是太不仔细了;
#include <iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#define N 220
#define M 44000
#define INF 0x3f3f3f3f
using namespace std;
struct node
{
int next,val,to;
}e[M];
int head[N],d[N],mark[N],v[N],num[N],n,m,point[N],q[N];
int busyness(int a,int b)
{
int t=point[b]-point[a];
return t*t*t;
}
void dfs(int t)
{
mark[t]=1;
for(int i=head[t];i!=-1;i=e[i].next)
if(!mark[e[i].to])
dfs(e[i].to);
}
void spfa()
{
memset(num,0,sizeof(num));
memset(mark,0,sizeof(mark));
for(int i=1;i<=n;i++)
v[i]=0,d[i]=INF;
d[1]=0;
v[1]=1;
int cnt=0;
q[0]=1;
num[1]=1;
while(cnt>=0)
{
int t=q[cnt--];
v[t]=0;
if(mark[t]) continue;
for(int i=head[t];i!=-1;i=e[i].next)
{
int b=e[i].to;
if(mark[b]) continue;
if(d[b]>d[t]+e[i].val)
{
d[b]=d[t]+e[i].val;
if(!v[b])
{
q[++cnt]=b;
v[b]=1;
if(++num[b]>n) dfs(b);
}
}
}
}
}
int main()
{
int T;
cin>>T;
for(int kase=1;kase<=T;kase++)
{
cin>>n;
for(int i=1;i<=n;i++)
scanf("%d",&point[i]),head[i]=-1;
cin>>m;
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
e[i].to=b;
e[i].next=head[a];
e[i].val=busyness(a,b);
head[a]=i;
}
spfa();
int q;
cin>>q;
printf("Case %d:\n",kase);
for(int i=0;i<q;i++)
{
int x;
scanf("%d",&x);
if(d[x]==INF||d[x]<3||mark[x])
cout<<'?'<<endl;
else
cout<<d[x]<<endl;
}
}
}