hdu 1317 XYZZY bellman_ford判环+floyd

题意:玩家能量初始值有100,有100个房间,每个房间有一个大于-100小于100的能量值,每个房间与其他一些房间单向联通,玩家走到一个房间后能量加上房间的能量值,房间可以重复进入。若玩家的能量小于等于0,玩家输,若玩家到达终点,玩家赢。

以房间为点,从房间到房间建有向边,边的权值为进入的房间的能量值。求初始点到各点的剩余最大能量,注意如果出现环,要判断这个环是否与终点联通。判断连通性需要用floyd进行预处理。

判环应该用bellman,此题的数据比较弱,用spfa的代码也能AC,但应该是错的。

举个例子:同时出现两个环,一个与终点联通,一个不连通。若spfa先判断不连通的环时,会直接返回玩家输,而正确结果应该是赢。

先给出bellman_ford代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define N 110
#define M 11000
#define INF 0x7ffffff

using namespace std;

int r[N][N],n,val[N],d[N],cnt;

struct node
{
    int u,v;
}e[M];

void floyd()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                r[i][j]=max(r[i][j],r[i][k]&r[k][j]);
}

int bellman_ford(int s,int t)
{
    for(int i=1;i<=n;i++)   d[i]=-INF;
    d[s]=100;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<cnt;j++)
        {
            int u=e[j].u,v=e[j].v;
            if(d[u]+val[v]>0)   d[v]=max(d[v],d[u]+val[v]);
        }
    }
    for(int i=0;i<cnt;i++)
    {
        int u=e[i].u,v=e[i].v;
        if(d[u]+val[v]>0&&d[v]<d[u]+val[v]&&r[v][t])    return 1;
    }
    return d[t]>0;
}

int main()
{
    while(~scanf("%d",&n)&&n!=-1)
    {
        cnt=0;
        memset(r,0,sizeof(r));
        for(int i=1;i<=n;i++)
        {
            int nn;
            scanf("%d%d",&val[i],&nn);
            for(int j=0;j<nn;j++)
            {
                int c;
                scanf("%d",&c);
                e[cnt].u=i;
                e[cnt++].v=c;
                r[i][c]=1;
            }
        }
        floyd();
        if(bellman_ford(1,n))   cout<<"winnable"<<endl;
        else    cout<<"hopeless"<<endl;
    }
}

AC的spfa代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#define N 110
#define INF 0x7ffffff

using namespace std;

int n,val[N],mp[N][N],d[N],v[N],num[N],r[N][N];

void floyd()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                r[i][j]=max(r[i][j],r[i][k]&r[k][j]);
}

int spfa(int s,int t)
{
    for(int i=1;i<=n;i++)
    {
        num[i]=0;
        d[i]=-INF;
        v[i]=0;
    }
    queue<int> q;
    q.push(s);
    v[s]=1;
    d[s]=100;
    num[s]++;
    while(!q.empty())
    {
        int c=q.front();
        q.pop();
        v[c]=0;
        for(int i=1;i<=n;i++)
        {
            if(d[c]+mp[c][i]>0&&d[i]<d[c]+mp[c][i])
            {
                d[i]=d[c]+mp[c][i];
                if(!v[i])
                {
                    if(++num[i]>=n)  return r[i][t];
                    v[i]=1,q.push(i);
                }
            }
        }
    }
    if(d[t]>0) return 1;
    return 0;
}

int main()
{
    while(~scanf("%d",&n)&&n!=-1)
    {
        memset(mp,0,sizeof(mp));
        memset(r,0,sizeof(r));
        for(int i=1;i<=n;i++)
        {
            int nn;
            scanf("%d%d",&val[i],&nn);
            for(int j=0;j<nn;j++)
            {
                int c;
                scanf("%d",&c);
                mp[i][c]=1;
                r[i][c]=1;
            }
        }
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                if(mp[i][j]==0) mp[i][j]=-INF;
                else    mp[i][j]*=val[j];
            }
        floyd();
        if(spfa(1,n))   cout<<"winnable"<<endl;
        else cout<<"hopeless"<<endl;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值