CF 658 D 数学 方程解的个数

13 篇文章 0 订阅
D. Bear and Polynomials
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.

He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:

Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:

  • ai is integer for every i;
  • |ai| ≤ k for every i;
  • an ≠ 0.

Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.

Input

The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.

The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.

Output

Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.

Examples
input
3 1000000000
10 -9 -3 5
output
3
input
3 12
10 -9 -3 5
output
2
input
2 20
14 -7 19
output
0
Note

In the first sample, we are given a polynomial P(x) = 10 - 9x - 3x2 + 5x3.

Limak can change one coefficient in three ways:

  1. He can set a0 =  - 10. Then he would get Q(x) =  - 10 - 9x - 3x2 + 5x3 and indeed Q(2) =  - 10 - 18 - 12 + 40 = 0.
  2. Or he can set a2 =  - 8. Then Q(x) = 10 - 9x - 8x2 + 5x3 and indeed Q(2) = 10 - 18 - 32 + 40 = 0.
  3. Or he can set a1 =  - 19. Then Q(x) = 10 - 19x - 3x2 + 5x3 and indeed Q(2) = 10 - 38 - 12 + 40 = 0.

In the second sample, we are given the same polynomial. This time though, k is equal to 12 instead of 109. Two first of ways listed above are still valid but in the third way we would get |a1| > k what is not allowed. Thus, the answer is 2 this time.

题目大意:

给一个方程,问,该方程有几个解。

思路:

首先,通过P(2)!=0我们可以得出方程ai*2^i次,然后因为ai可以修改成二进制的,那么我们就将所有的数字能往上面移动的,都通过ai/2放到更高的位数上面去,这样,后面的x前面的值就是0了(因此,上面这个步骤是for(0到n))。然后因为是都往前以为放,所以现在的最高位是n+1位,然后我们就只需要从0位重新枚举到n,找到第一个开始出现非0的数字的时候,然后就break,并记录下这个位置,设为l。

然后我们就通过枚举的方法,从n+1位开始枚举,然后如果枚举到了第l位了,那么就可以开始统计次数了,假设合并到第i项系数为tmp,此时第i项系数只有取a[i]-tmp且前面所有项系数均为0才可以使得整个多项式结果为0,因为再前面的这些x前面的系数都是0,那么只能从这一位开始统计,如果绝对值小于tmp,那么就+1,如果大于tmp就break

然后还要注意有个trick

①如果后面都不存在,只有n位的话,那么就直接continue(感觉这里break也行)

#include
    
    
     
     

using namespace std;

typedef long long ll;
const int maxn = 200000 + 5;
ll n, k;
ll a[maxn];
ll b[maxn];

int main(){
    cin >> n >> k;
    for (int i = 0; i <= n; i++) {
        scanf("%I64d", a + i);
        b[i] = a[i];
    }
    for (int i = 0; i <= n; i++){
        b[i + 1] += (b[i] / 2);
        b[i] %= 2;
        //printf("i = %d b[i] = %I64d\n", i, b[i]);
    }
    int l = n + 1;
    for (int i = 0; i <= n; i++){
        if (b[i]) {
            l = i;
            break;
        }
    }
    ll tmp = b[n + 1];
    ll ans = 0;
    for (int i = n; i >= 0; i--){
        tmp = (tmp << 1) + b[i];
        if (abs(tmp) > 2 * k) break;
        if (i > l) continue;
        if (i == n && tmp == a[i]) continue;
        ans += (abs(a[i] - tmp) <= k);
    }
    printf("%I64d\n", ans);
    return 0;
}
    
    



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值