肉眼判讀特徵向量

美國數學家波利亞 (G. Polya) 說:「每一個問題的解答,都需要有某個『發現』才行。」這句話套用到下面的矩陣特徵值求解問題尤其貼切:

A=\left[\!\!\begin{array}{rrrr}  1&-1&2&3\\  -1&1&3&2\\  2&3&1&-1\\  3&2&-1&1  \end{array}\!\!\right]

矩陣 A 的特別模式讓我們得以避免解四次方程式的繁瑣計算,事實上,只要運用心算即可求得 A 有特徵值 \{-5,1,3,5\}。這究竟是如何辦到的?某個「發現」在此指的又是什麼?

 
令 A 為一 n\times n 階矩陣。多數線性代數教科書按照以下步驟計算特徵值和特徵向量:

(1) 設特徵方程 A\mathbf{x}=\lambda\mathbf{x},其中 \lambda 是特徵值,\mathbf{x}\neq\mathbf{0} 是特徵向量。將特徵方程改寫為 (A-\lambda I)\mathbf{x}=\mathbf{0},此式的意義是 A-\lambda I 的零空間 N(A-\lambda I),稱為特徵空間,包含不為零的向量,也就是說,A-\lambda I 是不可逆的,以行列式表達的等價的條件式為 \mathrm{det}(A-\lambda I)=0

(2) 將 n 階行列式 \mathrm{det}(A-tI) 展開,便得到一個 n 次多項式 p_A(t),稱為 A 的特徵多項式。解出 p_A(t) 的根,此即為特徵值 \lambda

(3) 對於每一個特徵值 \lambda,解出特徵空間 N(A-\lambda I) 的基底,也就是對應 \lambda 的特徵向量。

 
根據代數基本定理,n 次多項式恰有 n 個根,因此 A 共有 n 個特徵值(包含重根)。對於小型矩陣,我們可以直接解出特徵多項式的根,很不幸,這個方法的效用有限,因為法國數學家 Évariste Galois 早在公元 1846 年就證明一般 n>4 次方程式不存在公式解。所以,當面對高階矩陣時,除非矩陣具有某種特殊可化簡型態(參閱“分塊矩陣特徵值的計算方法”),否則我們只能仰賴數值方法來計算特徵值。

 
上面的分析過程給出了特徵值和特徵向量的「制式」計算方法:先解特徵值,後求特徵向量。但倘若我們已經知道 A 的特徵向量 \mathbf{x},將它代入特徵方程 A\mathbf{x}=\lambda\mathbf{x},這樣也可以得到對應的特徵值 \lambda。不過,這個做法的障礙在於特徵向量的解法沒有固定的套路,而且僅適用於少數特殊矩陣模式,因為這兩個原因,今天只有極少數人曉得特徵向量的肉眼判讀術。下面我列舉一些特殊矩陣,不用蠻力計算,也不需要背誦法則,只要留意矩陣的相關特質即可迅速得到答案。

 
考慮上三角形方陣

U=\begin{bmatrix}    3&4&5\\    0&6&7\\    0&0&8    \end{bmatrix}

三角形矩陣的主對角元就是特徵值,所以 U 有特徵值 \{3,6,8\}。明顯地,對應 \lambda=3 的特徵向量為 \mathbf{x}=\begin{bmatrix}    1\\    0\\    0    \end{bmatrix},但弔詭的是,要能一眼看出對應 \lambda=6 和 \lambda=8 的特徵向量卻不容易。讀者或許會懷疑:針對如此簡單的三角形矩陣,我們都無法立刻讀出特徵向量,遑論其他複雜的矩陣。暫時不必急著下定論,繼續往下探討其他的情況再說。

 
再看下面這例子,

B=\left[\!\!\begin{array}{rrr}    1&1&2\\    2&2&4\\    -3&-3&-6    \end{array}\!\!\right]

觀察得知 B 僅有一個線性獨立的行向量,亦即 \mathrm{rank}B=1,我們稱它為秩-1(Rank-One) 矩陣。利用行向量之間的倍數關係,不難得到 B 的兩個獨立特徵向量 \left[\!\!\begin{array}{r}    1\\    1\\    -1    \end{array}\!\!\right]\left[\!\!\begin{array}{r}    1\\    -1\\    0    \end{array}\!\!\right] 對應 \lambda=0。這表示 \lambda=0 重複兩次,那麼還有一個特徵值為何?我們知道跡數等於特徵值之和,所以還有一個特徵值 \lambda=1+2+(-6)=-3,而對應的特徵向量正是行向量 \left[\!\!\begin{array}{r}    1\\    2\\    -3    \end{array}\!\!\right]!這需要加以解釋。設 B 為 n\times n 階實矩陣,且 \mathrm{rank}B=1,則 B 必定可以表示為 B=\mathbf{x}\mathbf{y}^T\mathbf{x},\mathbf{y}\in\mathbb{R}^n,上例中,

B=\left[\!\!\begin{array}{rrr}  1&1&2\\  2&2&4\\  -3&-3&-6  \end{array}\!\!\right]=\left[\!\!\begin{array}{r}  1\\  2\\  -3  \end{array}\!\!\right]\begin{bmatrix}  1&1&2  \end{bmatrix}=\mathbf{x}\mathbf{y}^T

利用矩陣乘法結合律,可得

\begin{aligned}  B\mathbf{x}&=(\mathbf{x}\mathbf{y}^T)\mathbf{x}=\mathbf{x}(\mathbf{y}^T\mathbf{x})=(\mathbf{x}^T\mathbf{y})\mathbf{x}\end{aligned}

得知 B 有一特徵值 \lambda=\mathbf{x}^T\mathbf{y}=\mathrm{trace}B,因為特徵向量 \mathbf{x} 可以表示成 B 的行向量的線性組合,\mathbf{x} 是行空間 C(B) 的唯一基底向量。由秩—零度定理可知 \mathrm{dim}N(B)=n-\mathrm{rank}B=n-1,令零空間 N(B) 的 n-1 個基底向量為 \mathbf{u}_ii=1,\ldots,n-1,就有 B\mathbf{u}_i=\mathbf{0}B 有 n-1 個重複特徵值 \lambda=0,證得秩-1矩陣的特徵值為 \{\mathbf{x}^T\mathbf{y},0,\ldots,0\}。上述基底向量 \mathbf{u}_ii=1,\ldots,n-1,通常憑肉眼即可判讀出來。

 
類似的特徵向量解讀術還可以應用於下列形式矩陣:

A=cI+d\mathbf{x}\mathbf{y}^T

其中 c,d\in\mathbb{R}。Householder 矩陣即為一例,H=I-2\mathbf{v}\mathbf{v}^T\Vert\mathbf{v}\Vert=1(見“特殊矩陣(四):Householder 矩陣”)。Householder 矩陣未必容易看出,但下面這個矩陣則有清楚的模式:

\begin{aligned}  C&=\begin{bmatrix}    a&b&b&b\\    b&a&b&b\\    b&b&a&b\\    b&b&b&a    \end{bmatrix}=(a-b)I+b\mathbf{e}\mathbf{e}^T\end{aligned}

上式中 \mathbf{e} 的各元全是 1。不難發現 C 有特徵向量 \mathbf{e}=\begin{bmatrix}    1\\    1\\    1\\    1    \end{bmatrix} 對應 \lambda=a+3b,還有三個獨立的特徵向量對應 \lambda=a-b\left[\!\!\begin{array}{r}    1\\    -1\\    0\\    0    \end{array}\!\!\right], \left[\!\!\begin{array}{r}    0\\    1\\    -1\\    0    \end{array}\!\!\right], \left[\!\!\begin{array}{r}    0\\    0\\    1\\    -1    \end{array}\!\!\right]

 
回到本文一開始給出的問題,我們將它以符號表示如下:

A=\begin{bmatrix}    a&b&c&d\\    b&a&d&c\\    c&d&a&b\\    d&c&b&a    \end{bmatrix}

其中 a,b,c,d\in\mathbb{R}。觀察發現 A 是實對稱矩陣,而且 A 的每一列所有元總和都等於 a+b+c+d。顯然,A 有特徵向量 \begin{bmatrix}    1\\    1\\    1\\    1    \end{bmatrix} 對應 \lambda=a+b+c+d。回想實對稱矩陣的特徵值必定是實數,而且存在彼此正交的特徵向量集。這個結果縮小了搜索範圍,其他三個特徵向量各元之和必等於零(因為與上述向量正交)。利用對稱原理就得到特徵向量 \left[\!\!\begin{array}{r}    1\\    1\\    -1\\    -1    \end{array}\!\!\right]對應 \lambda=a+b-c-d,特徵向量 \left[\!\!\begin{array}{r}    1\\    -1\\    1\\    -1    \end{array}\!\!\right] 對應 \lambda=a-b+c-d,特徵向量 \left[\!\!\begin{array}{r}    1\\    -1\\    -1\\    1    \end{array}\!\!\right] 對應 \lambda=a-b-c+d。請讀者自行確認 A 的特徵向量構成一組正交向量集。

 
最後我們整理特徵向量肉眼判讀術的兩項關鍵技巧:(一) 先求得最明顯的特徵向量,然後算出對應的特徵值。(二) 運用矩陣的特別模式或屬性立下特徵值或特徵向量的條件及限制。在實際應用時,不應墨守成規,也不必拘泥小節,譬如先求特徵值抑或先找特徵向量。總之,基本道理不難,但要達到「運用之妙,存乎一心」的境界,惟有勤加練習一途。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值