- 博客(9)
- 收藏
- 关注
原创 python实现K-mease
# coding=utf-8import xml.etree.ElementTree as ETimport numpy as npimport globdef iou(box, clusters): """ 计算一个ground truth边界盒和k个先验框(Anchor)的交并比(IOU)值。 参数box: 元组或者数据,代表ground truth的长宽。 参数clusters: 形如(k,2)的numpy数组,其中k是聚类Anchor框的个数 返回
2020-07-20 14:39:56 226
原创 目标检测之mAP
TP:真正,真阳性,实际为正例,预测也为正例;FP:假正,假阳性,实际为负例,预测为正例;TN:真负,真阴性,实际为负例,预测也为负例;FN:假负,假阴性,实际为正例,预测为负例...
2020-06-01 11:15:08 858
原创 YOLOv3之标签生成
标签就是网络要学习的东西。怎么生成标签呢?首先,需要有数据。数据包括:图片数据,目标框数据这个图有两个人一只狗,对应两类三个目标框:images/87.jpg 0 304 245 140 133 1 97 235 124 153 1 199 156 354 311怎么把目标框生成YOLOV3的标签呢?看代码比较简单:import numpy as npimport mathCLASS_NUM = 2IMG_WIDTH = 416BOXES = "images/87.jpg 0
2020-05-28 08:23:59 2041
原创 UNet学习笔记:注意事项及网络代码实现
1. 什么是图像分割图像分割是预测图像中每一个像素所属的类别或者物体。图像分割网络学习的是图片的像素值以及像素的位置。由于是像素级别的分割,因此相比图像检测,分割对位置的精度要求更高,即使只偏移一个像素对分割结果的影响也很大。图像分割算法主要分为三类:1.普通分割:前景与背景的分割,如把猫狗的区域与背景分开1.语义分割:类与类的分割,如把图片中的猫,狗分开,所有猫类是一种颜色,狗类是另一种颜色2.实例分割:实例与实例的分割,把图片中的每一只猫和狗都分开,每只猫颜色不同,每只狗颜色也不同2. 图像
2020-05-25 17:01:40 2159 2
原创 softmax改造:ArcFace
1. Softmax如果有n类,则权重w为n个向量组成的矩阵。Θ\ThetaΘ是特征向量x与对应权重向量wiw_iwi之间的角度。在softmax中,只需要Θ1<Θ2\Theta _{1}<\Theta _{2}Θ1<Θ2即可判定x属于第1类。2. L-Softmax首次提出angular margin的思想。对softmax进行改造,引入角度间隔系数m。m是一个大于1的数,需要在m∗Θ1<Θ2m*\Theta _{1}<\Theta _{2}m∗Θ1<
2020-05-24 20:45:09 864
原创 torch.nn里的损失函数:MSE、BCE、BCEWithLogits、NLLLoss、CrossEntropyLoss的用法
1. nn.MSELoss()loss = nn.MSELoss()input = torch.randn(3, 5, requires_grad=True)target = torch.randn(3, 5)output = loss(input, target)output.backward()2. nn.BCELoss()交叉熵损失函数,输入的x值需先经过sigmoid压缩到(0,1)之间。标签形式为[0, 0, 1], [0, 1, 1]等,个类别预测概率独立,类与类之间不互斥,可见
2020-05-23 20:29:28 8125
原创 MTCNN技术要点总结
MTCNN里面的技术关键点包括:iou(交并比)nms(非极大值抑制)convert_to_square(转正方形)偏移量计算图像金字塔特征图反算本文简单的总结这6个技术要点1.iouP_Net和R_Net使用交集比并集的iou:O_Net使用交集比最小框的iou:2.nmsnms流程如下:3.convert_to_square(转正方形)在侦测的时候,P_NET的人脸预测框需要先转化为边长为24的正方形,然后在原图上裁剪出对应的图片之后才能把图片输入R_NET.
2020-05-22 15:32:12 1194
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人