状态压缩dp入门题 poj3254

本文介绍了一道关于状态压缩动态规划的经典题目——放牧问题。问题要求在一块划分好的土地上放置牛群,但不能让牛位于相邻的格子内。文章详细解释了解决这一问题的算法思路,包括如何确定所有可能的状态、如何判断状态的有效性以及如何通过动态规划计算最终的放牧方案数量。
摘要由CSDN通过智能技术生成

本博客是在写的很菜,如若看不懂,可以参看http://www.tuicool.com/articles/JVzMVj,很棒
这道题是一道入门的状态压缩dp,题目大意是农夫有一块地,被划分为m行n列大小相等的格子,其中一些格子是可以放牧的(用1标记),农夫可以在这些格子里放牛,其他格子则不能放牛(用0标记),并且要求不可以使相邻格子都有牛。现在输入数据给出这块地的大小及可否放牧的情况,求该农夫有多少种放牧方案可以选择(注意:任何格子都不放也是一种选择,不要忘记考虑!
思路是,先找到所有可能的状态,然后再找是0的情况,把它逆过来,再然后给第一行赋初值,然后就差不多了

#include <iostream>
#include <cstring>
#include <cstdio>
#define mod 100000000
using namespace std;
int n,m,top=0;
int s[5000],cur[15],dp[15][5000];
 bool OK(int x)//判断x是否可行,如果两者相邻,则不可行
{
    if(x&(x<<1))
        return false;
    return true;
}
void init()//这里是把所有可能的情况列了一遍
{
    top=0;
    int total=1<<n;
    for(int i=0; i<total; i++)
    {
        if(OK(i))
            s[++top]=i;//如果从1开始要注意,最后的时候,要把top-1
    }
}
 bool fit(int x,int q)
{
    if(x&cur[q])
        return false;
    return true;
}
int main()
{
    //while(scanf("%d%d",&m,&n)!=EOF)
    while(cin>>m>>n)
    {

        memset(s,0,sizeof(s));
        memset(dp,0,sizeof(dp));
          init();
        for(int i=1; i<=m; i++)
        {
            cur[i]=0;//本人在这里WA了10多遍,只因用了memset,以为是一样的,实际上,你每次用了memset之后就会把之前得到的cur[i]的值重新赋成0了。。。。一定要注意啊
            //memset(cur,0,sizeof(cur));
            int num;
            for(int j=1; j<=n; j++)
            {
                cin>>num;
                //scanf("%d",&num);
                if(num==0)
                {
                    cur[i]+=(1<<(n-j));//这里要变成逆,为了方便进行查找是否重合
                }
            }
        }
        for(int i=1; i<=top; i++)
        {
            if(fit(s[i],1))
                dp[1][i]=1;//对第一行赋初值
        }
        for(int i=2; i<=m; i++) //从第i行到第m行
        {
            for(int k=1; k<=top; k++)
            {
                if(!fit(s[k],i))//先找到与实际情况第i行相符的s[k]
                    continue;
                for(int j=1; j<=top; j++)
                {
                    if(!fit(s[j],i-1))//然后找到i-1行距s[k]不冲突的是[j]
                        continue;
                    if(s[k]&s[j])
                        continue;
                    dp[i][k]=(dp[i][k]+dp[i-1][j])%mod;
                }
            }
        }
        int ans=0;
        for(int i=1; i<=top; i++)
        {
            ans=(ans+dp[m][i])%mod;
            //cout<<ans<<endl;
        }
        cout<<ans<<endl;
        //printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>