莫比乌斯反演 超详细

前置芝士:数论分块。

莫比乌斯函数

定义莫比乌斯函数: μ ( n ) = { 1        n = 1 0        n 含有完全平方因子 ( − 1 ) k        k 为 n 的不同质因子个数 \mu(n)=\begin{cases}1\ \ \ \ \ \ n=1\\0\ \ \ \ \ \ n含有完全平方因子\\(-1)^k\ \ \ \ \ \ k为n的不同质因子个数\end{cases} μ(n)= 1      n=10      n含有完全平方因子(1)k      kn的不同质因子个数

根据神神奇奇的定义式,易得它是一个积性函数。那么就可以用线性筛快速求解:

	for(int i=2;i<=n;++i){
		if(!vis[i]) p[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&1ll*p[j]*i<=n;++j){
			int now=i*p[j];
			vis[now]=1;
			if(i%p[j]==0){mu[now]=0;break;}
			mu[now]=mu[i]*mu[p[j]];
		}
	}

它有一个非常重要的性质:

                ∑ d ∣ n μ ( d ) = { 1        n = 1 0        n ≠ 1      ⇒ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) = { 1        gcd ⁡ ( i , j ) = 1 0        gcd ⁡ ( i , j ) ≠ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sum\limits_{d\mid n}\mu(d)=\begin{cases}1\ \ \ \ \ \ n=1\\0\ \ \ \ \ \ n\neq 1\end{cases}\ \ \ \ \Rightarrow\sum\limits_{d\mid \gcd(i,j)}\mu(d)=\begin{cases}1\ \ \ \ \ \ \gcd(i,j)=1\\0\ \ \ \ \ \ \gcd(i,j)\neq 1\end{cases}                dnμ(d)={1      n=10      n=1    dgcd(i,j)μ(d)={1      gcd(i,j)=10      gcd(i,j)=1

利用这个性质,我们可以通过一系列推柿子来降低一些求 g c d gcd gcd l c m lcm lcm 和的问题的时间复杂度。这就是莫比乌斯反演。

莫比乌斯变换

  • 对于两个数论函数 f ( n ) , g ( n ) f(n),g(n) f(n),g(n),若 f ( n ) = ∑ d ∣ n g ( d ) f(n)=\sum\limits_{d\mid n} g(d) f(n)=dng(d),则 g ( n ) = ∑ d ∣ n f ( d ) μ ( n d ) g(n)=\sum\limits_{d\mid n} f(d)\mu(\dfrac{n}{d}) g(n)=dnf(d)μ(dn)

一些式子

其实都是一些比较套路的转化,多做几道就会了qwq

  • ∑ i = 1 n ∑ j = 1 m   ( gcd ⁡ ( i , j ) = k ) \sum\limits_{i=1}^n \sum\limits_{j=1}^m\ (\gcd(i,j)=k) i=1nj=1m (gcd(i,j)=k)

首先,套路性的将 d d d 转化为 1 1 1 ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋    ( gcd ⁡ ( i , j ) = 1 ) \sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor} \sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\ \ (\gcd(i,j)=1) i=1knj=1km  (gcd(i,j)=1)

然后,再套路性的引入莫反: ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) \sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor} \sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\sum\limits_{d\mid \gcd(i,j)} \mu(d) i=1knj=1kmdgcd(i,j)μ(d)

接着,再套路性的将 d d d 提前(假设 n < m n<m n<m): ∑ d = 1 n μ ( d ) ∑ i = 1 ⌊ n d × k ⌋ ∑ i = 1 ⌊ m d × k ⌋ 1 \sum\limits_{d=1}^{n}\mu(d)\sum\limits_{i=1}^{\left\lfloor\frac{n}{d\times k}\right\rfloor}\sum\limits_{i=1}^{\left\lfloor\frac{m}{d\times k}\right\rfloor}1 d=1nμ(d)i=1d×kni=1d×km1

于是我们就得到了最终的柿子: ∑ d = 1 n μ ( d ) ⌊ n d × k ⌋ ⌊ m d × k ⌋ \sum\limits_{d=1}^n \mu(d){\left\lfloor\frac{n}{d\times k}\right\rfloor}{\left\lfloor\frac{m}{d\times k}\right\rfloor} d=1nμ(d)d×knd×km,只要预处理莫比乌斯函数的前缀和,再数论分块,就可以做到 O ( n ) O(\sqrt n) O(n ) 的复杂度了。

  • ∑ i = 1 n ∑ j = 1 m   l c m ( i , j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\ lcm(i,j) i=1nj=1m lcm(i,j)

l c m lcm lcm 不好求,我们可以转化为 g c d gcd gcd ∑ i = 1 n ∑ j = 1 m   i × j gcd ⁡ ( i , j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\ \dfrac{i\times j}{\gcd(i,j)} i=1nj=1m gcd(i,j)i×j

还是套路性的,枚举 g c d gcd gcd(依然假设 n < m n<m n<m): ∑ k = 1 n ∑ i = 1 n ∑ j = 1 m   i × j k ( gcd ⁡ ( i , j ) = k ) \sum\limits_{k=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m\ \dfrac{i\times j}{k}(\gcd(i,j)=k) k=1ni=1nj=1m ki×j(gcd(i,j)=k)

接着将 d d d 化为 1 1 1 ∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋   i × j k × k 2 ( gcd ⁡ ( i , j ) = 1 ) \sum\limits_{k=1}^n\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\ \dfrac{i\times j}{k}\times k^2(\gcd(i,j)=1) k=1ni=1knj=1km ki×j×k2(gcd(i,j)=1)

引入 μ \mu μ ∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋   i × j ×   k ( ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) ) \sum\limits_{k=1}^n\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\ i\times j\times \ k(\sum\limits_{d\mid \gcd(i,j)} \mu(d)) k=1ni=1knj=1km i×j× k(dgcd(i,j)μ(d))

d d d 提前: ∑ k = 1 n ∑ d = 1 ⌊ n k ⌋ μ ( d ) ∑ i = 1 ⌊ n k × d ⌋ ∑ j = 1 ⌊ m k × d ⌋   i × j ×   k × d 2 \sum\limits_{k=1}^n\sum\limits_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\mu(d)\sum\limits_{i=1}^{\left\lfloor\frac{n}{k\times d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{k\times d}\right\rfloor}\ i\times j\times \ k\times d^2 k=1nd=1knμ(d)i=1k×dnj=1k×dm i×j× k×d2

这里有是一个常见套路:将 k × d k\times d k×d T T T 代换: ∑ T = 1 n T × ∑ d ∣ T d × μ ( d ) ∑ i = 1 ⌊ n T ⌋ ∑ j = 1 ⌊ m T ⌋   i × j \sum\limits_{T=1}^nT\times\sum\limits_{d\mid T} d\times\mu(d)\sum\limits_{i=1}^{\left\lfloor\frac{n}{T}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{T}\right\rfloor}\ i\times j T=1nT×dTd×μ(d)i=1Tnj=1Tm i×j

再变一下形: ∑ T = 1 n T × ( ∑ d ∣ T d × μ ( d ) ) ( ∑ i = 1 ⌊ n T ⌋ i ) ( ∑ j = 1 ⌊ m T ⌋   j ) \sum\limits_{T=1}^nT\times(\sum\limits_{d\mid T} d\times\mu(d))(\sum\limits_{i=1}^{\left\lfloor\frac{n}{T}\right\rfloor}i)(\sum\limits_{j=1}^{\left\lfloor\frac{m}{T}\right\rfloor}\ j) T=1nT×(dTd×μ(d))(i=1Tni)(j=1Tm j)

发现后两个括号就是前缀和,而第一个括号可以枚举 d d d 预处理,根据某些神奇的积分知识可以证明这样是 O ( n log ⁡ log ⁡ n ) O(n\log\log n) O(nloglogn) 的。但这样在某些题里会被卡,又发现 f ( n ) = ∑ d ∣ n d × μ ( d ) f(n)=\sum\limits_{d\mid n} d\times \mu(d) f(n)=dnd×μ(d) 是一个积性函数,是可以线性筛的,这样就做到了 O ( n ) O(n) O(n)

inline void shai(int n){
	val[1]=1;
	rep(i,2,n){
		if(!vis[i]) p[++tot]=i,val[i]=(mod+1-i)%mod;
		for(int j=1;j<=tot&&1ll*i*p[j]<=n;++j){
			int now=i*p[j];vis[now]=1;
			if(i%p[j]==0){val[now]=val[i];break;}
			val[now]=1ll*val[i]*val[p[j]]%mod;
		}
	}
}

还有一类 l c m lcm lcm 相关题型给定数组 a a a,求 ∑ i = 1 n ∑ j = 1 m   l c m ( a i , a j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\ lcm(a_i,a_j) i=1nj=1m lcm(ai,aj),这样的问题一般 a a a 的值域不超过 1 e 6 1e6 1e6,可以考虑开一个桶 c c c 记录每个数出现了几次,假设值域上界为 n n n,答案就是 ∑ T = 1 n T × ( ∑ d ∣ T d × μ ( d ) ) ( ∑ i = 1 ⌊ n T ⌋ i × c i T ) ( ∑ j = 1 ⌊ n T ⌋   j × c j T ) \sum\limits_{T=1}^nT\times(\sum\limits_{d\mid T} d\times\mu(d))(\sum\limits_{i=1}^{\left\lfloor\frac{n}{T}\right\rfloor}i\times c_{iT})(\sum\limits_{j=1}^{\left\lfloor\frac{n}{T}\right\rfloor}\ j\times c_{jT}) T=1nT×(dTd×μ(d))(i=1Tni×ciT)(j=1Tn j×cjT),发现后两个括号虽然变了,但每次暴力计算也不会超时 (对于这些神奇循环,其实笔者只知道是 O(能过)qwq) ,于是可解。

  • d ( x ) d(x) d(x) x x x 的约数个数,求 ∑ i = 1 n ∑ j = 1 m   d ( i j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\ d(ij) i=1nj=1m d(ij)

首先得到 d d d 的一个性质: d ( i j ) = ∑ x ∣ i ∑ y ∣ j ( gcd ⁡ ( x , y ) = 1 ) d(ij)=\sum\limits_{x\mid i}\sum\limits_{y\mid j}(\gcd(x,y)=1) d(ij)=xiyj(gcd(x,y)=1)
简单证明:假设 i × j i\times j i×j 含有因子 p c p^c pc p a ∣ i p^a\mid i pai p a + 1 ∤ i p^{a+1}\nmid i pa+1i p b ∣ j p^b\mid j pbj p b + 1 ∤ j p^{b+1}\nmid j pb+1j,那么在 i × j i\times j i×j 中有质因子 p p p a + b + 1 a+b+1 a+b+1 种选择方案,设 ( x , y ) (x,y) (x,y) 表示 i i i 中选 x x x 个, j j j 中选 y y y 个,则等式右边的选择有 ( [ 1 , a ] , 0 ) ([1,a],0) ([1,a],0) ( 0 , [ 1 , b ] ) (0,[1,b]) (0,[1,b]) ( 0 , 0 ) (0,0) (0,0) a + b + 1 a+b+1 a+b+1 种方案,等式成立。

转化完 d d d 函数就可以按套路推柿子了: ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j ( gcd ⁡ ( x , y ) = 1 ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x\mid i}\sum\limits_{y\mid j}(\gcd(x,y)=1) i=1nj=1mxiyj(gcd(x,y)=1)

形如 x ∣ i x\mid i xi 的柿子不好求,我们改成枚举 x x x y y y ∑ x = 1 n ∑ y = 1 m ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m y ⌋ gcd ⁡ ( x , y ) = 1 \sum\limits_{x=1}^n\sum\limits_{y=1}^m\sum\limits_{i=1}^{\left\lfloor\frac{n}{x}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{y}\right\rfloor}\gcd(x,y)=1 x=1ny=1mi=1xnj=1ymgcd(x,y)=1

依然是 g c d gcd gcd 的转化,顺便消一些 i i i j j j ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ ∑ d ∣ gcd ⁡ ( x , y ) μ ( d ) \sum\limits_{x=1}^n\sum\limits_{y=1}^m{\left\lfloor\frac{n}{x}\right\rfloor}{\left\lfloor\frac{m}{y}\right\rfloor}\sum\limits_{d\mid\gcd(x,y)}\mu(d) x=1ny=1mxnymdgcd(x,y)μ(d)

依然是将 d d d 提前(还是假设 n < m n<m n<m): ∑ d = 1 n μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n x × d ⌋ ⌊ m y × d ⌋ \sum\limits_{d=1}^n \mu(d)\sum\limits_{x=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{\left\lfloor\frac{n}{x\times d}\right\rfloor}{\left\lfloor\frac{m}{y\times d}\right\rfloor} d=1nμ(d)x=1dny=1dmx×dny×dm

打打括号: ∑ d = 1 n μ ( d ) ( ∑ x = 1 ⌊ n d ⌋ ⌊ n x × d ⌋ ) ( ∑ y = 1 ⌊ m d ⌋ ⌊ m y × d ⌋ ) \sum\limits_{d=1}^n \mu(d)(\sum\limits_{x=1}^{\left\lfloor\frac{n}{d}\right\rfloor}{\left\lfloor\frac{n}{x\times d}\right\rfloor})(\sum\limits_{y=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{\left\lfloor\frac{m}{y\times d}\right\rfloor}) d=1nμ(d)(x=1dnx×dn)(y=1dmy×dm)

这就又变成了线性筛+数论分块的经典柿子。

可以发现其实不同的推柿子都有一些相同的套路性步骤,只要手感出来了就万事大吉了qwq。

这些柿子在洛谷的对应题目:


记个结论: [ k [k [k 的最大完全平方因子为 1 ] = ∑ i 2 ∣ k μ ( i ) 1]=\sum\limits_{i^2\mid k} \mu(i) 1]=i2kμ(i)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值