引言:
Em算法是一种迭代算法,用于对含有隐变量的概率模型参数的极大似然估计。或者极大后验概率。
E步,求解期望;M步,求解极大。也成为期望极大算法。
Em算法
首先解释隐变量,隐变量是指我们无法观测到的变量,这要是我们需要估计的。三个硬币,A硬币的为正面就第二次投掷B硬币,否则投掷C硬币。并且记录第二次投掷的结果作为观测值。因此我们可以想象,最终第二次的结果是可以被观测的,但是第一次投掷的结果其实是隐含在了第一次投掷的结果里。
如果Y表示观测数据, P ( Y ∣ θ ) P(Y| \theta) P(