【统计学习算法】EM算法

EM算法是一种迭代方法,用于估计含有隐变量的概率模型参数。在GMM高斯混合模型中,EM算法通过E步估计期望,M步求解极大来逼近真实参数。虽然EM算法保证收敛,但其对初始值敏感,可能导致局部最优解。可以通过预处理如k-means聚类来改善初始化,提高聚类效果。
摘要由CSDN通过智能技术生成

引言:

Em算法是一种迭代算法,用于对含有隐变量的概率模型参数的极大似然估计。或者极大后验概率。
E步,求解期望;M步,求解极大。也成为期望极大算法。

Em算法

首先解释隐变量,隐变量是指我们无法观测到的变量,这要是我们需要估计的。三个硬币,A硬币的为正面就第二次投掷B硬币,否则投掷C硬币。并且记录第二次投掷的结果作为观测值。因此我们可以想象,最终第二次的结果是可以被观测的,但是第一次投掷的结果其实是隐含在了第一次投掷的结果里。

如果Y表示观测数据, P ( Y ∣ θ ) P(Y| \theta) P(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值