[leetcode]Maximum Subarray (C语言)

问题描述
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

这道题并不大难,从头开始遍历,如果是负的,就抛弃,继续,如果是正的,就将其加入。
代码如下:

int maxSubArray(int* nums, int numsSize) {
    int i,j;
    if(numsSize<=0)
        return 0;

    int max=0,realMax=nums[0];

    for(i = 0;i<numsSize;i++){
        max+=nums[i];
        if(max<0){
            realMax = (realMax>max)?realMax:max;
            max = 0;
            continue;
        }
        realMax = (realMax>max)?realMax:max;
    }
    return realMax;
}

但是很奇怪的是:它题目中要求用divided&conquer方法实现一遍,这显然是需要使用2分法,但是它的复杂度大概是O(nlogn)的复杂度,实际测试时间,前者是4ms,后者是8ms,不知道为啥要多次一举
代码如下:

int dividedMax(int *nums,int start,int end){
    if(end-start==1)
        return nums[start];
    int mid = (start+end)/2;
    int max1 = dividedMax(nums,start,mid);
    int max2 = dividedMax(nums,mid,end);

    //处理中间部位
    int leftMax=nums[mid],tmpMax = 0,realMax;
    int i;
    for(i = mid;i>=start;i--){
        tmpMax+=nums[i];
        if(tmpMax>leftMax)
            leftMax = tmpMax;
    }
    tmpMax = 0;
    int rightMax=nums[mid];
    for(i = mid;i<end;i++){
        tmpMax += nums[i];
        if(tmpMax>rightMax)
            rightMax = tmpMax;
    }
    realMax = leftMax+rightMax-nums[mid];

    max1 = (max1>max2)?max1:max2;
    realMax = (realMax>max1)?realMax:max1;

    return realMax;
}
int maxSubArray(int* nums, int numsSize) {
    return dividedMax(nums,0,numsSize);
}

更新:
开始做题的时候完全是靠“灵光一闪”,没有归纳,没有总结,没有提炼,直到看到[Code Ganker]的博客(http://blog.csdn.net/linhuanmars/article/details/21314059)
他将这道题归纳为动态规划算法。所谓动态规划指对于某个元素a[j],局部最优解为:local[j] = max(local[j-1]+a[j],a[j]),即取a[j]或者不取a[j]两种。而全局最优为global[j] = max(local[j],global[j-1]);
(注意:对于一般的动态规划,local[j] = max(local[j-1]+a[j],local[j-1],但是对本题而言,如果前者为负的,那需要放弃并开始新的)
copy代码如下:

public int maxSubArray(int[] A) {  
    if(A==null || A.length==0)  
        return 0;  
    int global = A[0];  
    int local = A[0];  
    for(int i=1;i<A.length;i++)  
    {  
        local = Math.max(A[i],local+A[i]);  
        global = Math.max(local,global);  
    }  
    return global;  
}  
题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列。 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] 解题思路: 这是一个典型的回溯算法的问题,我们可以通过递归的方式实现。我们先固定一个数,再递归求解剩下的数的排列,最后再将固定的数和递归求解的结果合并。 代码实现: void backtrack(int* nums, int numsSize, int** result, int* returnSize, int index) { if (index == numsSize) { // 递归结束 result[*returnSize] = (int *)malloc(numsSize * sizeof(int)); // 为result分配空间 memcpy(result[*returnSize], nums, numsSize * sizeof(int)); // 将nums复制到result中 (*returnSize)++; // 返回结果数量自增1 return; } for (int i = index; i < numsSize; i++) { // 遍历数组 // 交换元素 int temp = nums[index]; nums[index] = nums[i]; nums[i] = temp; // 递归 backtrack(nums, numsSize, result, returnSize, index + 1); // 恢复原数组 temp = nums[index]; nums[index] = nums[i]; nums[i] = temp; } } int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) { int count = 1; for (int i = 2; i <= numsSize; i++) { count *= i; // 计算排列的总数 } int** result = (int **)malloc(count * sizeof(int *)); *returnColumnSizes = (int *)malloc(count * sizeof(int)); *returnSize = 0; backtrack(nums, numsSize, result, returnSize, 0); for (int i = 0; i < *returnSize; i++) { (*returnColumnSizes)[i] = numsSize; } return result; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值