[leetcode-375]Guess Number Higher or Lower II(java)

这道题只要利用动态规划的算法,我们需要注意这样一个事实。
E(i,j) = min( k + max(E(i,k-1),E(k+1,j))(本来想用语言描述一下,但是怎么说,都表达不清楚)
其中E(i,j)表示范围在(i,j)之间的最优值。显然,我们最终要求的结果为E(1,n)
k实际上是在遍历i,j时所猜的值,因此,k+max(E(i,k-1),E(k+1,j))实际上表示当猜数K时所需要的最大数量钱。为什么是取max呢?因为猜k时只有三种选择,小、等、大。因此,应该选择最坏的情况,所以取最大。

那为什么最后又是min呢?因为,对k遍历一遍之后,结果已经出来了,这时候应该选择适当的k,使得最后数量钱最小。

public class Solution {
    public int getMoneyAmount(int n) {
        int[][] money = new int[n+1][n+1];//全部为0
        for(int i = n - 1;i>=1;i--){//为什么是从n-1开始呢?因为在递推关系式中用到了公式下面一行的数据,所以只能从n-1开始
            for(int j = i + 1;j<=n;j++){//为什么从左开始呢?同样的道理
                int min = Integer.MAX_VALUE;
                for(int k = i;k<=j;k++){
                    int tmp = k;
                    if(i < k - 1 && k + 1 < j)
                        tmp = k + Math.max(money[i][k-1],money[k+1][j]);
                    else if(i < k - 1)
                        tmp = k + money[i][k-1];
                    else if(k + 1 <j)
                        tmp = k + money[k+1][j];
                    min = Math.min(tmp,min);
                }
                money[i][j] = min;
            }
        }
        return money[1][n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值