这道题只要利用动态规划的算法,我们需要注意这样一个事实。
E(i,j) = min( k + max(E(i,k-1),E(k+1,j))(本来想用语言描述一下,但是怎么说,都表达不清楚)
其中E(i,j)表示范围在(i,j)之间的最优值。显然,我们最终要求的结果为E(1,n)
k实际上是在遍历i,j时所猜的值,因此,k+max(E(i,k-1),E(k+1,j))实际上表示当猜数K时所需要的最大数量钱。为什么是取max呢?因为猜k时只有三种选择,小、等、大。因此,应该选择最坏的情况,所以取最大。
那为什么最后又是min呢?因为,对k遍历一遍之后,结果已经出来了,这时候应该选择适当的k,使得最后数量钱最小。
public class Solution {
public int getMoneyAmount(int n) {
int[][] money = new int[n+1][n+1];//全部为0
for(int i = n - 1;i>=1;i--){//为什么是从n-1开始呢?因为在递推关系式中用到了公式下面一行的数据,所以只能从n-1开始
for(int j = i + 1;j<=n;j++){//为什么从左开始呢?同样的道理
int min = Integer.MAX_VALUE;
for(int k = i;k<=j;k++){
int tmp = k;
if(i < k - 1 && k + 1 < j)
tmp = k + Math.max(money[i][k-1],money[k+1][j]);
else if(i < k - 1)
tmp = k + money[i][k-1];
else if(k + 1 <j)
tmp = k + money[k+1][j];
min = Math.min(tmp,min);
}
money[i][j] = min;
}
}
return money[1][n];
}
}