目录
一、前言
前面我们讲了直接插入排序和希尔排序这两种插入排序,如果还有什么问题就请点击下面的链接
那么今天我们就来讲一讲选择排序。
二、选择排序
基本思想: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
三、直接选择排序
*
在元素集合
array[i]--array[n-1]
中选择关键码最大
(
小
)
的数据元素。
*
若它不是这组元素中的最后一个
(
第一个
)
元素,则将它与这组元素中的最后一个(第一个)元素交换。
*
在剩余的
array[i]--array[n-2]
(
array[i+1]--array[n-1]
)集合中,重复上述步骤,直到集合剩余
1
个元素。
如下图:
注:除了上面的图所演示的每次选一个最大或最小的数这种方法外,我们还可以同时选出最大和最小的数直接进行排序。为了实现这种方法,我们可以使用两个指针,同时从数组的两边进行移动,选出最大和最小的,放到数组的两边,然后指针分别往后和往前移动一步。直到两个指针相遇或错过。
* 代码实现如下:
void SelectSort(int* a, int n)
{
int begin = 0;
int end = n - 1;
while(begin < end)
{
int maxi = begin;
int mini = begin;
for(int i = 0; i <= end; i++)
{
if(a[i] > a[maxi])
{
maxi = i
}
if(a[i] < a[mini])
{
mini = i;
}
}
swap(&a[begin], &a[mini]);
if(begin == maxi)
maxi = mini
swap(&a[end], &a[maxi]);
begin++;
end--;
}
}
直接选择排序的特性总结:
1、 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用。
2.、时间复杂度:O(N^2)。
3、空间复杂度:O(1)。
4.、稳定性:不稳定。
四、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。(以下我们以排降序为例)
代码实现如下:
向下调整算法:
void AdjustDown(int* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;//先默认最小的是左孩子
while (child < n)
{
if (child + 1 < n && a[child + 1] < a[child])//找出小的那个孩子,右孩子要存在
{
child += 1;
}
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
//建堆,对于任何一棵树(左右子树可能都不是小堆),要建成堆,就从最后一个非叶子节点进行向下调整
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
//进行排序
int end = n - 1;
while(end > 0)
{
swap(&a[0], &a[end]);
//重新建堆
AdjustDown(a, end, 0);
end--;
}
}
我们来简单测试一下堆排序:
int main()
{
int a[10] = { 6,4,3,7,9,86,1,5,0,2};
int size = sizeof(a) / sizeof(int);
HeapSort(a, size);
for (int i = 0; i < 10; i++)
{
printf("%d ", a[i]);
}
printf("\n");
return 0;
}
运行结果如下:
直接选择排序的特性总结:
1. 堆排序使用堆来选数,效率就高了很多。
2. 时间复杂度:O(N*logN)。
3. 空间复杂度:O(1)。
4. 稳定性:不稳定。